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ABSTRACT 

This research manuscript addresses finding 

a solution to the SIS Epidemic model using 

the Caputo derivative. To achieve the 

required results, Laplace transform 

together with the Adomian Decomposition 

Method (LADM) were utilized. This method 

is a powerful tool for dealing with various 

linear and nonlinear problems of 

fractional-order differential equations 

(FODEs). Additionally, some results related 

to the qualitative theory of the model of 

interest were studied. The computational 

results showed the verification of the 

performed analysis. The investigation of the 

approximate solution computed in the form 

of an infinite series was carried out. The 

results were graphically displayed to 

analyze the adopted procedure for solving 

nonlinear FODEs using the Caputo 

fractional derivative 
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2024;7(3):740-747. https://doi.org/10.54361/ajmas.247339   

 

INTRODUCTION 

The use of mathematical expressions provides a fundamental description of physical reality, enabling researchers to 

enhance their understanding of underlying phenomena by studying accurate or approximate solutions of mathematical 

models [1]. However, finding analytical solutions to these complex mathematical models often poses significant 

challenges. As such, the development of robust numerical solutions has become highly advantageous for solving these 

intricate problems. Fractional derivatives have emerged as a powerful tool, offering researchers new avenues for 

modeling a wide range of phenomena across various scientific disciplines [2]. The primary motivation for utilizing 

fractional derivatives, rather than their integer-order counterparts, is the ability to account for the effects of memory in 

the modeling process. Integer-order models often fail to capture the memory effects that can have a profound impact on 

the dynamics of complex systems, such as human populations in the context of disease transmission. 

By incorporating fractional derivatives, researchers can develop more comprehensive and accurate mathematical models 

that better reflect the complex behaviors observed in real-world systems. This approach has the potential to lead to a 

deeper understanding of the underlying mechanisms governing these phenomena and facilitate the development of more 

effective strategies for addressing the challenges they present. 

The study of fractional-order models and their analytical or numerical solutions has emerged as a vibrant and rapidly 

evolving field of research, with widespread applications across the scientific landscape. Continued advancements in this 

area hold the promise of transformative insights and innovative solutions to the complex problems faced by the research 

community. 

In the context of disease transmission dynamics, fractional derivatives offer a compelling approach to account for the 

memory effect within populations. The memory effect refers to the influence of past events on the current state of the 

system. In the case of disease spread, this memory effect can represent factors such as acquired immunity, previous 

exposure, or behavioral changes influenced by past experiences. By considering these memory-related effects through 
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the use of fractional derivatives, researchers can develop more accurate and comprehensive models that better capture 

the underlying dynamics of disease propagation [3,4]. 

The incorporation of fractional derivatives provides researchers with a powerful mathematical tool for modeling and 

understanding complex systems in which memory and non-local behavior play a significant role - aspects that cannot 

be adequately captured by traditional integer-order models. These derivatives offer a means to bridge the mathematical 

description and the inherent complexities of real-world phenomena, leading to improved predictions, analyses, and the 

development of more effective control strategies across various scientific disciplines [5,6]. 

The ability of fractional derivatives to account for memory effects is particularly beneficial in the context of disease 

transmission modeling. By considering the influence of past events, such as previous exposures and acquired immunity, 

researchers can develop more realistic and accurate models that better reflect the true dynamics of disease spread within 

human populations. This, in turn, can lead to enhanced understanding of disease transmission patterns, the development 

of more targeted intervention strategies, and the formulation of more effective public health policies. 

Furthermore, the application of fractional derivatives extends beyond the realm of disease transmission, providing a 

versatile mathematical framework for modeling and analyzing a wide range of complex systems in fields like physics, 

engineering, biology, and economics, where memory and non-local behavior are prevalent. The continued advancements 

in the theory and applications of fractional calculus hold great promise for addressing the challenges faced by researchers 

in these diverse domains. 

The wide-ranging applicability of fractional calculus has been extensively documented in the literature [7]. In a seminal 

work, Ross presented the crucial criteria that define fractional derivatives, establishing a robust mathematical framework 

for this field [8]. Researchers have been actively exploring various analytical and numerical techniques to solve both 

linear and nonlinear fractional differential equations. Some have adapted classical methods to enhance their 

effectiveness, while others have established connections between two or more techniques to obtain solutions for 

fractional equations. One of the prominent models in the study of infectious disease dynamics is the Susceptible-

Infected-Susceptible (SIS) epidemic model. This model describes the dynamic interaction between individuals who are 

susceptible to infection and those who are currently infected, particularly applicable to diseases that do not confer 

permanent immunity after infection, such as the common cold and influenza. 

The SIS model represents the transition of individuals between the susceptible and infected states, which can be 

characterized by two key rates: the rate of transition from the susceptible state to the infected state (through the process 

of infection) and the rate of transition from the infected state to the susceptible state (through recovery or the loss of 

acquired immunity) [9]. 

The use of fractional derivatives in the context of the Susceptible-Infected-Susceptible (SIS) epidemic model has gained 

significant attention, as it allows for the incorporation of memory effects and non-local behavior often observed in the 

spread of infectious diseases. By employing fractional-order derivatives, researchers can develop more comprehensive 

and accurate models that capture the complex dynamics underlying disease transmission within human populations. The 

overarching goal of this work is to contribute to the expanding body of mathematical tools and techniques available for 

the rigorous modeling and analysis of infectious disease dynamics, as exemplified by the SIS epidemiological 

framework. The findings of this study have the potential to enhance our fundamental understanding of disease 

transmission processes and inform the development of more effective intervention strategies. 

  

Related Work 
The SIS model describes the dynamic interaction between susceptible and infected individuals, representing the 

transition between these two states. Key factors affecting the epidemic dynamics in this model are the infection rate and 

the recovery or immunity loss rate [10]. The model can be used to estimate the spread of the infection, the duration of 

the epidemic, and the impact of changes in the infection rate or recovery rate on the numbers of susceptible and infected 

individuals.  

Considered one of the fundamental models in epidemiology and medical research, the SIS model helps to understand 

the basic dynamics of infectious disease spread and analyze the effects of preventive interventions, such as vaccination 

or public health measures [11]. 
𝑑𝑆(𝑡)

𝑑𝑡
=  𝜇𝑁 − 𝛽𝑆(𝑡) + 𝛾𝐼(𝑡) − 𝜇𝑆(𝑡). 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾)𝐼(𝑡). 
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Adomian Decomposition Method (ADM) is a well-established numerical technique that has been extensively employed 

to find approximate solutions to various mathematical models, including those describing epidemic dynamics [12]. 

Proposed by George Adomian, the ADM is a universal method that considers the approximate solution of a nonlinear 

equation as an infinite series, which typically converges to the exact solution. 

One of the primary advantages of the ADM is its ability to solve a wide range of integral and differential equations, 

including those encountered in the context of epidemic modeling. This versatility makes the ADM a valuable tool for 

researchers investigating the dynamics of infectious disease spread using mathematical models, such as the Susceptible-

Infected-Susceptible (SIS) model. 

In comparison to other numerical methods, such as the Homotopy Analysis Method (HAM) and the Differential 

Transformed Method (DTM), the ADM offers a unique and systematic approach to solving nonlinear problems. By 

decomposing the nonlinear terms into a series of Adomian polynomials, the ADM provides a straightforward and 

efficient way to obtain approximate solutions, even for complex mathematical models. 

Building upon the strengths of the ADM, the Laplace Adomian Decomposition Method (LADM) has been proposed as 

an advanced mathematical approach for analyzing differential equations and their applications in various scientific and 

engineering fields [13,14]. The LADM combines the Laplace transform and the Adomian decomposition to solve 

fractional-order differential equations with infinite kernels. 

The LADM relies on the Laplace transform to convert the ordinary or partial differential equation into an algebraic 

equation in the frequency domain, and then applies the Adomian decomposition analysis to solve the algebraic equation 

and retrieve the time-domain solution of the original differential equation. The Adomian analysis method is employed 

to handle the infinite kernel and challenges arising from the fractional order of the differential equation. 

The Laplace Adomian Decomposition Method (LADM) holds significant importance in the fields of numerical 

computation and mathematical analysis, as it provides a semi-analytical solution approach for solving complex 

differential equations [15,16]. This advanced technique aids in the understanding of system characteristics and dynamic 

behavior, making it a valuable tool for researchers and engineers working in various domains. 

The Laplace Adomian Decomposition Method (LADM) has emerged as a powerful mathematical approach for solving 

complex differential equations, enabling researchers and engineers to gain deeper insights into a wide range of physical, 

chemical, and biological systems. By combining the Laplace transform and the Adomian decomposition analysis, the 

LADM offers a versatile means of tackling fractional-order differential equations, which are commonly encountered in 

modeling diverse phenomena. 

The effectiveness of the LADM has been demonstrated across various disciplines, including biological sciences, 

electrical engineering, and materials science. This advanced technique provides a semi-analytical solution approach, 

allowing for the elucidation of complex system characteristics and dynamic behavior. The LADM's ability to derive 

high-precision solutions has made it a valuable tool for researchers and engineers seeking to understand and predict the 

behavior of intricate systems. 

At the core of the LADM's efficacy lies its unique integration of the Laplace transform and the Adomian decomposition 

analysis. The Laplace transform is employed to convert the original ordinary or partial differential equation into an 

algebraic equation in the frequency domain, while the Adomian decomposition is used to solve this algebraic equation 

and retrieve the corresponding time-domain solution. This combined approach enables the LADM to effectively handle 

the infinite kernel and challenges associated with the fractional order of the differential equation. 

Despite the significant advantages of the LADM, its effective implementation requires a strong foundation in 

mathematical analysis and numerical computation [16,17]. It is essential to develop efficient and suitable software tools 

capable of accurately performing Laplace transformations and Adomian decomposition analyses, in order to ensure the 

reliable and accurate application of this method. 

 The Laplace Adomian Decomposition Method (LADM) represents a significant advancement in the field of fractional-

order differential equation solving, characterized by its comprehensive applicability and demonstrated effectiveness 

across multiple scientific and engineering domains. The continued development and refinement of this method, along 

with the creation of robust software tools, will further enhance its utility and impact in the.  

 

METHOD  
Fractional-Order Epidemiological Model with Laplace Adomian Decomposition Analysis 

This section is dedicated to the analysis of the fractional-order epidemiological model (1) with specified initial 

conditions. To investigate this model, we apply the Laplace transform to both sides of the governing equations, which 

allows for further mathematical analysis and solution derivation. 

The fractional-order epidemiological model under consideration is given by: 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Amera S. Alq J Med App Sci. 2024;7(3):740-747    743 

 

𝐷𝑡
𝛼 𝑆(𝑡) = 𝜇𝑁 − 𝛽𝑆(𝑡) + 𝛾𝐼(𝑡) − 𝜇𝑆(𝑡)𝑐 . 

                                   𝐷𝑡
𝛼𝐼(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾)𝐼(𝑡).𝑐                                (1) 

 

with the initial conditions: 

𝑆(0)  =  𝑛, 𝐼(0)  =  𝑚, 𝑎𝑛𝑑 𝑆(𝑡)  +  𝐼(𝑡)  =  𝑁(𝑡)  =  1 

 

𝐷𝑐
𝑡
𝛼 represents the Caputo fractional derivative of order 𝛼 ∈  (0, 1], 𝜇 denotes the birth and death rate, 𝛽 is the contact 

rate, 𝛾 is the recovery rate, and 𝑆(𝑡) and 𝐼(𝑡) are the time-dependent proportions of susceptible and infected individuals, 

respectively, within a continuous population 𝑁(𝑡)  =  1, [21]. 

To the best of our knowledge, an explicit analytical solution formula for this fractional-order epidemiological model is 

not readily available in the existing. Therefore, we employ a series representation approach based on the Laplace 

Adomian Decomposition Method (LADM) to derive explicit expressions for the unknown functions S(t) and I(t). 

By applying the Laplace transform to the fractional-order differential equations, we obtain a transformed system of 

algebraic equations that can be solved using the LADM. This approach allows us to construct a convergent series 

solution for the susceptible and infected populations, which can be evaluated numerically to obtain accurate 

approximations. 

Furthermore, we validate the accuracy of the theoretical LADM-based solution formulas by comparing them with the 

results of two distinct numerical schemes: the Grunwald-Letnikov method and the Adomian Decomposition Method 

(ADM) [17,18]. Additionally, we investigate the impact of the fractional derivative order α on the system dynamics by 

analyzing the behavior of the solutions as α approaches the integer value of 1, which corresponds to the standard 

epidemiological model. 

The derivation of the explicit LADM-based solution formulas, along with the numerical validations and the comparative 

analysis of the fractional and integer-order models, provide valuable insights into the dynamics and applications of this 

fractional-order epidemiological system [17,20]. 

Applying the Laplace transform on both sides of (1),we get 

 

ℒ{ 𝐷𝑡
𝛼1 𝑆(𝑡)} = ℒ{𝜇𝑁 − 𝛽𝑆(𝑡) + 𝛾𝐼(𝑡) − 𝜇𝑆(𝑡)𝑐 } 

                                                            ℒ{ 𝐷𝑡
𝛼2𝐼(𝑡)} = ℒ{𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾)𝐼(𝑡)𝑐 }                                           (2) 

using the property of Laplace transform, we have 

𝑠𝛼1ℒ{𝑆(𝑡)} − 𝑠𝛼1−1𝑆(0) = ℒ{𝜇𝑁 − 𝛽𝑆(𝑡) + 𝛾𝐼(𝑡) − 𝜇𝑆(𝑡)} 

                                   𝑠𝛼2ℒ{𝑆(𝑡)} − 𝑠𝛼2−1𝐼(0) = ℒ{𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾)𝐼(𝑡)}                                                (3) 

Now using initial conditions and taking inverse  Laplace transform to system (3), we have 

𝑆(𝑡) =
 𝑆0

𝑠
+ ℒ−1 {

1

𝑆𝛼1
 ℒ{𝜇𝑁 − 𝛽𝑆(𝑡) + 𝛾𝐼(𝑡) − 𝜇𝑆(𝑡)}}. 

                               𝐼(𝑡) =
𝐼0

𝑠
+ ℒ−1 {

1

𝑆𝛼2
 ℒ{𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾)𝐼(𝑡)}}.                                       (4)                      

It should be assumed that method gives the solution as an infinite series 

𝑆(𝑡) = ∑ 𝑆𝑘 ,   

∞

𝑘=0

𝐼(𝑡) = ∑ 𝐼𝑘

∞

𝑘=0

. 

and the nonlinear terms involved in the model are 𝑆(𝑡)𝐼(𝑡) are decompose by Adomian polynomial as 

𝑆𝐼 = ∑ 𝐴𝑘

∞

𝑗=0

 

Where 𝐴𝑘 are Adomian polynomials defined as 

𝐴𝑘 =
1

Γ(𝑘 + 1)

𝑑𝑘

𝑑ℎ𝑘 [∑ ℎ𝑘𝑆𝑗

𝑘

𝑗=0

∑ ℎ𝑘𝐼𝑗

𝑘

𝑗=0

]
|ℎ = 0

 

We can calculate the first four terms 

 𝐴0  =  𝑆0𝐼0, 𝐴1  =  𝑆0𝐼1  +  𝑆1𝐼0, 𝐴2  =  𝑆0𝐼2  +  𝑆1𝐼1  +  𝑆2𝐼0, 𝐴3  =  𝑆0𝐼3  +  𝑆1𝐼2  +  𝑆2𝐼1  +  𝑆3𝐼0  … … 

Substituting the above infinite series form into equation (4), we have 
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 ∑ 𝑆𝑘
∞
𝑘=0 (𝑡) =

 𝑆0

𝑠
+ ℒ−1 {

1

𝑆𝛼1
 ℒ{𝜇𝑁 − 𝛽 ∑ 𝑆𝑘

∞
𝑘=0 (𝑡) + 𝛾 ∑ 𝐼𝑘

∞
𝑘=0 (𝑡) − 𝜇 ∑ 𝑆𝑘

∞
𝑘=0 (𝑡)}}. 

                ∑ 𝐼𝑘
∞
𝑘=0 (𝑡) =

𝐼0

𝑠
+ ℒ−1 {

1

𝑆𝛼2
 ℒ{𝛽 ∑ 𝐴𝑘

∞
𝑘=0 (𝑡) − (𝜇 + 𝛾) ∑ 𝐼𝑘

∞
𝑘=0 (𝑡)}}                                          (5) 

By matching the terms on both sides of the equation (3.3), we can get the following iterative algorithm 

 𝑆0 = 𝑛  , 𝐼0 =  𝑚. 

when 𝑘 =  0, from first equation of (5) 

𝑆1 =  ℒ−1 {
1

𝑠𝛼1
 ℒ{𝜇𝑁 − 𝛽𝑆0(𝑡) + 𝛾𝐼0(𝑡) − 𝜇𝑆0(𝑡)}} 

=  ℒ−1 {
1

𝑠𝛼1
 ℒ{𝜇𝑁 − 𝛽𝑛 + 𝛾𝑚 − 𝜇𝑛}} 

=  ℒ−1 {
1

𝑠𝛼1
 
1

𝑠
(𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)} 

= ℒ−1 {
1

𝑠𝛼1+1
 (𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)} 

= (𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)
𝑡𝛼1

Γ(𝛼1 + 1)
 

when 𝑘 =  0, from second equation of (5) 

𝐼1 =  ℒ−1 {
1

𝑠𝛼2
 ℒ{𝛽𝐴0(𝑡) − (𝜇 + 𝛾)𝐼0(𝑡)}}. 

=  ℒ−1 {
1

𝑠𝛼2
 ℒ{𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚}} 

= ℒ−1 {
1

𝑠𝛼2
 
1

𝑠
(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)} 

= ℒ−1 {
1

𝑠𝛼2+1
 (𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)} 

= (𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)
𝑡𝛼2

Γ(𝛼2 + 1)
 

When 𝑘 =  1, from first equation of (5) 

𝑆2 =  ℒ−1 {
1

𝑆𝛼1
 ℒ{𝜇𝑁 − 𝛽𝑆1(𝑡) + 𝛾𝐼1(𝑡) − 𝜇𝑆1(𝑡)}} 

=  ℒ−1 {
1

𝑆𝛼1
 ℒ {𝜇𝑁 − (𝛽 + 𝜇)(𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)

𝑡𝛼1

Γ(𝛼1 + 1)
+ 𝛾(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)

𝑡𝛼2

Γ(𝛼2 + 1)
}} 

= ℒ−1 {
1

𝑆𝛼1
 (𝜇𝑁 − (𝛽 + 𝜇)(𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)

Γ(𝛼1 + 1)

Γ(𝛼1 + 1)𝑠𝛼1+1
+ 𝛾(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)

Γ(𝛼2 + 1)

Γ(𝛼2 + 1)𝑠𝛼2+1
)} 

= ℒ−1 { (𝜇𝑁 − (𝛽 + 𝜇)(𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)
1

𝑠2𝛼1+1
+ 𝛾(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)

1

𝑠𝛼1+𝛼2+1
)} 

= (𝜇𝑁 − (𝛽 + 𝜇)(𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)
𝑡2𝛼1

Γ(2𝛼1 + 1)
+ 𝛾(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)

𝑡𝛼1+𝛼2

Γ(𝛼1 + 𝛼2 + 1)
) 

When 𝑘 =  1, from second equation of (5) 

𝐼2 =  ℒ−1 {
1

𝑆𝛼2
 ℒ{𝛽𝐴1(𝑡) − (𝜇 + 𝛾)𝐼1(𝑡)}} 

 =  ℒ−1 {
1

𝑆𝛼2
 ℒ{𝛽 [𝑛(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)

𝑡𝛼2

Γ(𝛼2+1)
+ 𝑚(𝜇𝑁 − (𝛽 + 𝜇)𝑛 + 𝛾𝑚)

𝑡𝛼1

Γ(𝛼1+1)
] − (𝜇 + 𝛾)(𝛽𝑛𝑚 − (𝜇 +

𝛾)𝑚)
𝑡𝛼2

Γ(𝛼2+1)
}} 

=  ℒ−1 {
1

𝑆𝛼2
 {𝛽 [(𝛽𝑛2𝑚 − (𝜇 + 𝛾)𝑛𝑚)

Γ(𝛼2 + 1)

Γ(𝛼2 + 1)𝑠𝛼2
+ (𝜇𝑁𝑚 − (𝛽 + 𝜇)𝑛𝑚 + 𝛾𝑚2)

Γ(𝛼1 + 1)

Γ(𝛼1 + 1)𝑠𝛼1
]

− (𝜇 + 𝛾)(𝛽𝑛𝑚 − (𝜇 + 𝛾)𝑚)
Γ(𝛼2 + 1)

Γ(𝛼2 + 1)𝑠𝛼2
}} 
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= { 𝛽 [(𝛽𝑛2𝑚 − (𝜇 + 𝛾)𝑛𝑚)
𝑡2𝛼2

Γ(2𝛼2 + 1)
+ (𝜇𝑁𝑚 − (𝛽 + 𝜇)𝑛𝑚 + 𝛾𝑚2)

𝑡𝛼1+𝛼2

Γ(𝛼1 + 𝛼2 + 1)
] − (𝜇 + 𝛾)(𝛽𝑛𝑚

− (𝜇 + 𝛾)𝑚)
𝑡2𝛼2

Γ(2𝛼2 + 1)
} 

 

⋮ 
Similarly, we can get the rest of the terms by using the system of equation  

                                              𝑆𝑘+1 =  ℒ−1 {
1

𝑆𝛼1
 ℒ{𝜇𝑁 − 𝛽𝑆𝑘(𝑡) + 𝛾𝐼𝑘(𝑡) − 𝜇𝑆𝑘(𝑡)}} 

                          𝐼𝑘+1 =  ℒ−1 {
1

𝑆𝛼2
 ℒ{𝛽𝐴𝑘(𝑡) − (𝜇 + 𝛾)𝐼𝑘(𝑡)}}                                                            (6) 

 

  So, we get the solution of the model as an infinite series 

𝑆(𝑡) = 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 + ⋯ +  𝑆𝑛+⋯. 
𝐼(𝑡) = 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 

 

NUMERICAL RESULTS 
 In this manuscript, some numerical simulations with the Caputo derivative operator for fractional order SIS model (1) 

are presented using Laplace Adomian Decomposition Method (LADM). Subject to the initial conditions: 𝑆0  =
 620,   𝐼0  =  480, and parameters value  𝛽 =  0.05, , 𝜇 =  0.02, 𝛿 =  0.3,  For the SIS model, a Caputo fractional order 

derivative was created and the Laplace Transformation and Adomian Decomposition Method were used to successfully 

analyze it. 

To highlight the efficiency of the purposive approach, the fractional model (1) was solved for 𝛼 =  1, and the numerical 

solution plots are presented in Figure 1. These plots show good agreement with the results reported in reference [20]. 

 

 
Figure 1. Simulation results for SIS at 𝜶 = 𝟏 . 

 

In figure 1 When the epidemic starts, most individuals are susceptible. Once the virus begins to spread, the number of 

infected individuals increases rapidly because they transmit the infection to susceptible individuals. During the spread, 

the number of infected individuals increases rapidly, leading to a decrease in the number of susceptible individuals and 

for equilibrium Point, the system reaches a stable state where the number of infected and susceptible individuals remains 

constant. At this stage, the rate of infection and recovery is balanced, keeping the number of infected individual’s 

constant. 

To study the impact of the fractional order on the approximated state functions of model (1), we analyzed several values 

of 𝛼, and numerical results were documented in Figures 2 and 3. All plots in Figure 2 exhibit a decreasing trend and 

stabilize after several days. 
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Figure 2. Simulation results for susceptible at different order. 

 

As we can see, for the highest fractional order 𝛼 = 1, Drops rapidly at first, then stabilizes at a low value. This indicates 

that the system starts with a large number of susceptible individuals, but due to the rapid infection rate, the number 

quickly decreases to a low stable value. It is observed that when 𝛼 = 0.75 ,0.5 the same results can be obtained, but at 

slower rate than 𝛼 = 1, and for 𝛼 = 0.25 Shows the least steep decline and stabilizes at a much higher value. This 

indicates a very slow infection rate, allowing most individuals to remain susceptible. We can summarize the results as 

follows: 

The higher 𝛼, the faster the infection spreads, causing the number of susceptible individuals to drop rapidly and stabilize 

at a low value. The lower the 𝛼 , the slower the infection spreads, causing the number of susceptible individuals to 

decrease slowly and stabilize at a higher value. 

 
Figure 3. Simulation results for infected at different order. 

 

The graph in fig.3 shows the number of infected individuals 𝐼(𝑡) over time for the SIS model with different infection 

rates 𝛼. We can analysis of the Curves for 𝛼 = 1, rises quickly at first and stabilizes at a high value. This indicates that 

the system starts with a certain number of infected individuals, and due to the rapid infection rate, the number of infected 

increases quickly and stabilizes at a high value. for𝛼 = 0.75,0.5, rises less sharply than 𝛼 = 1, and stabilizes at a slightly 

lower value. This suggests that the infection spreads at a slower rate than 𝛼 = 1, leading to a lower stable number of 

infected individuals. And for 𝛼 = 0.25, shows the slowest increase and stabilizes at a much lower value. This indicates 

a very slow infection rate, resulting in a lower stable number of infected individuals. we can summarize as: The graph 

reflects how the infection rate 𝛼 affects the disease dynamics in a community. With a higher infection rate, the number 

of infected individuals increases quickly and stabilizes at a high value, while with a lower infection rate, the number of 

infected individuals increases slowly and stabilizes at a lower value.  

 

CONCLUSION 
In conclusion, this manuscript presents an effective approach to solving the SIS model using the Caputo derivative by 

employing the Laplace transform in conjunction with the Adomian decomposition method (LADM). The study 

demonstrates the robustness of LADM in addressing both linear and nonlinear fractional order differential equations 

(FODEs). Through computational and qualitative analyses, the existence of a solution is affirmed, and an approximate 

solution is derived in the form of an infinite series. Graphical representations further validate the efficiency of the 

proposed method in handling nonlinear FODEs under the Caputo fractional derivative, showcasing the method's 

potential for broader applications in complex differential equation models. 
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 الوبائي ذو الرتبة الكسرية SIS طريقة تحلل لابلاس أدوميان لنموذج

 أميرة شعيب 

 ليبيا  ،الزاوية ،جامعة الزاوية، كلية التربية، قسم الرياضيات
 

 المستخلص  

  . الوبائي باستخدام مشتقة كابوتو. لتحقيق النتائج المطلوبة، تم استخدام تحويل لابلاس مع طريقة تحلل أدوميان  SISتتناول هذه الورقة البحثية إيجاد حل لنموذج  

(. بالإضافة إلى ذلك، تم  FODEsتعُتبر هذه الطريقة أداة قوية للتعامل مع المشكلات الخطية وغير الخطية المختلفة للمعادلات التفاضلية الكسرية الرتبة )

عرض النتائج  سة بعض النتائج المتعلقة بالنظرية النوعية للنموذج محل الاهتمام. تم التحقيق في الحل التقريبي المحسوب في شكل سلسلة لانهائية. تم  درا

 بشكل بياني لتحليل الإجراءات المعتمدة لحل المعادلات التفاضلية الكسرية غير الخطية باستخدام مشتقة كابوتو الكسرية. 

 .SISمعادلة تفاضلية ذات رتبة كسرية، حل تحليلي، طريقة تحلل لابلاس أدوميان، نموذج  .المفتاحيةالكلمات 
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