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ABSTRACT

This paper uses the Adomoian
decomposition method to solve
Bernoulli differential equations, a type
of nonlinear differential equation with
numerous  physical  applications.
The test problems included numerous
Bernoulli differential equations with
varied nonlinear component
exponents, which were described using
a decomposition-based numerical
approach. The results are equally
accurate in tables and graphs as the
classical method.
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INTRODUCTION

Many issues can be represented as ordinary differential equations, particularly first-order Bernoulli differential
equations, thus we must study and solve them. Bernoulli differential equations (BDE) are nonlinear equations named
after J. Bernoulli, a Swiss scientist. They are equations characterized by their non-linearity and precise solutions. The
equation has a non-linear term, which is a function of the independent variable elevated to a specific exponent, such as
n. When n = 0 or 1, the BDE is linear. Substitution is used to translate n > 2 into a linear form, allowing for linear
solutions [1-4]. In this study, we use the Adomian decomposition method (ADM) to solve BDE with n = 2.

The (ADM) uses relation based on the Adomian polynomial to generate a solution for a series and since its presentation
in the 1980s, the Adomian polynomial has undergone various modifications. The original Adomian polynomial is

commonly utilized because to its simple and easy-to-memorize algorithm [5-8].

METHODS
Bernoulli differential equation % + P (x)y = Q(x)y"

The Adomian Decomposition Method is extremely effective in solving nonlinear ordinary differential equations.

Consider that the differential equation has the Bernoulli equation form.

2 4P @y = Q)y"
Where P (x) and Q(x) are arbitrary function of x, and n is an arbitrary constant.
Assume the answer of Eq. (1) is given by the power series form.

y (x) = XnzoYn(x) -
The nonlinear term y™ can be decomposed in terms of the Adomian polynomials
A, (x), given by

Y (%) = Xm0 An(X) .

@)

)

®)

Generally speaking, the Adomian polynomials are defined as follows for any function £ (¢, x) [9]:

_1an

A = (6220 €)| _

(4)
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The first four Adomian polynomials are derived in the following form:

Ay = F(£,70) A1 = Wf'(t:Y0) , Az = Y2f (&,0) + 5 V2" (£:0) 5)
A3 = Y3f'(6:y0) + y1yaf (6. y0) + V3" (&, o) - (6)
A few Adomian polynomials for the function y™are [10]
Ao = ¥§, A1 = ny1yi T Ay = nypyp Tt A n(n = 1D 2y, (7)
3
Az = nysy§ Tt nn = Dy - D -2) 2 y32. ®)
Integrating Eq. (1) produces the integral equation.
y (@) =y (0) + [;[Q(x)y"™ - P(x)y] dx, 9)
Where (0) is the starting condition. The relationship can be obtained by replacing Egs. (2) and (3) with Eqg. (9)
Y=o Yn (@) = ¥(0) + [ Q(x) T=g An (x) dx — [ P(x) T5i=o Y (x) dx. (10)
Eq. (10) is rewritten using the recursive forms.
Yo () =y (0, (11)
Vir1(0) = [ [Q()AK(x) — P(x)yi (x)]dx. (12)
From Egs. (11) and (12), we obtain the semi-analytical solution of Eq. (1), given by
y(x) = Ximo Yn (%). (13)
RESULTS
Example 1: Consider the Bernoulli differential equation
dy _ 3.3 _
=Xy ay,y(0) =1
Become
dy — +3.,3
Ir +xy=x"y7, (14)
With initial condition y(0) = 1, having the general solution
1
Y@ =g (15)

In this case P (x) = x and Q(x) = x3, respectively, and n = 3. Next, we compute a few Adomian polynomials for
3
v,

Ao = ¥5,41 = 3y1¥8, 42 = 3y2¥5 + 31 ¥5, Az = 3y3¥6 + 6917255 + ¥i (16)
Hence, we obtain
Yo) =y (0) = 1, (17)
Vir1(0) = [y [Q()AK(x) — P(x)yi (x)]dx. (18)
Eg. (12) can be written recursively for k = 0,1,2,3 in the decomposed solutions
1) = [F ¥ Ao () = xyo (0)]dx = Jx* — 252, (19)
Y2(x) = fy X341 (x) — xy1 (x)]dx = —x8 - —x +2 x (20)
Y3(0) = [ 1x3 A5 () — xy, (0)]dx = —=x12 ;1 0} ”x8 - 4—18x6 (21)
35 165 103 37 1
Ya(x) = fy T3 A3(0) — xys (0)]dx = ox16 — 22 it +18 12 I y10_ Ly (22)
y () = yo(x) + y1(x) + y2(x) + y3(x) + ya(x)
=32 y16 185,14 138,00 202,10 10848 D46 344 _l1y241, (23)
2048 1792 768 960 384 48 8 2

On the other hand, from the exact solution (15) it is easy to obtain

y (x) = m

35 16 _ 165 14 133 12 202 10 _ & 8 _ 15 6 4 _ l 2
2048 . 1792 1 768 768 ?60 384 4—8 + x Zx +1 i (24)
Clearly again, the solution (23) obtained by the (ADM) is |dent|cal to the exact solution (24).
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Table 1. Computed Approximate and Exact Solution for example 1

X Exact Approximate Abs.Error
0.1 9.9009900E-01 9.9018361E-01 8.5448405E-05
0.2 9.6153846E-01 9.6162323E-01 8.8161095E-05
0.3 9.1743119E-01 9.1692095E-01 5.5616326E-04
0.4 8.6206896E-01 8.6020490E-01 2.1623067E-03
0.5 8.0000000E-01 7.9679416E-01 4.0072935E-03
0.6 7.3529411E-01 7.3262555E-01 3.6292387E-03
0.7 6.7114093E-01 6.7338836E-01 3.3486627E-03
0.8 6.0975609E-01 6.2334517E-01 2.2286089E-02
0.9 15.524861E-01 5.8244315E-01 5.4222116E-02

’ Example 1
1 . . .
* Exact
095 Approximate | |
09r
0.85 [
08
> 075
07F
0.65
06
0.55
0.5

0 01 02 03 04 05 06 07 08 09 1
X
Figure 1. Numerical results for Example 1.

Approximate Solution
Exact Solution
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Figure 2. Approximate Solution Figure 3. Exact Solution
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Example 2: Consider the Bernoulli differential equation
y' =2xy+ 2x3y%,y(0) =1

Become
y' —2xy = 2x3y?, (25)
With y(0) = 1, having the general solution
1
y(x) - (1_x2)' (26)

In this case P (x) = —2x and Q(x) = 2x3, respectively, and n = 2. Next we compute a few Adomian polynomials
for y?,

Ay =y3 =0 =y(0) = 1,A1 = 2y1Y0,42 = 2Y2¥0 + ¥5 , A3 = 2Y3¥0 + 2Y12 (27)
Hence, we obtain
o) =y (0) = 1, (28)
Yie1(®) = [ 1Q(X)Ar(x) — P(x)y(x)]dx. (29)
Eq. (12) can be written recursively for k = 0,1, 2, 3 in the decomposed solutions
1
y1(x) = f:[2x3A0(x) + 2xyo(x)|dx = Ex“ + x2, (30)
y2(x) = f:[2x3A1(x) + 2xy,(x)]dx = ixs + 2x6 + 1 (31)
y3(x) = f:[2x3A2(x) + 2xy,(x)|dx = %xlz + = 10 + J\c8 + (32)
ya(x) = f [2x345(x) + 2xy3(x)|dx = —x16 +o 15 x4 +5e 25 x1? + x10 4 ixs, (33)
y(x) = Yo (x) + y1(x) + y2(x) + y3(x) + y4(x)
=3 16+12 14+:Z 12+E3 x10 4 a8 4 xb 4 x* +x2 + 1. (34)
On the other hand, from the exact solution (26) it is easy to obtain
_1 19 59 119
y()—(1 i L A T e R A Sk S (35)

Clearly again, the solution (34) obtained by the (ADE) is identical to the exact solution (35).

Table 2. Computed approximate and exact solution for example 2.

X Exact Approximate Abs.Error
0.1 1.0101010101 1.0101010100 1.0107514825E-12
0.2 1.0416666666 1.0416666649 1.6388618462E-09
0.3 1.0989010989 1.0989009179 1.6467015050E-07
0.4 1.1904761904 1.1904700562 5.1527639801E-06
0.5 1.3333333333 1.3332223498 8.3237602597E-05
0.6 1.5625000000 1.5611332835 8.7469849616E-04
0.7 1.9607843137 1.9474678303 6.7914065014E-03
0.8 21777777777 2.6607477317 4.2130816583E-02
0.9 5.2631578947 4.1059967520 2.1986061710E-01
Example 2

8

* Exact
Approximate

7

6
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X
Figure 4. Numerical results for example 2.
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Exact Solution

Approximate Solution
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Figure 5. Approximate Solution Figure 6. Exact Solution

CONCLUSION

In this study, we succeeded in applying the (ADM) to (BDE). We used it to solve actual problems, which were
considered to have a positive index of the nonlinear term. The Adomian decomposition method gave results similar to
the analytical solutions of the Bernoulli differential equation. The figures clearly show the exact solutions when
compared to those found using the (ADM).
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