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It should be noted that, for a more accurate

evaluation of paleoclimate, discrimination
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INTRODUCTION

The climate of a former geological era is known as the paleoclimate. There are three distinct periods of paleoclimate
that correspond to different geological ages: Precambrian, Phanerozoic, and Quaternary. Global paleoclimate markers
are the proxies that are susceptible to changes in the global paleoclimatic condition. The majority of their origins are in
marine sediments. Conversely, paleoclimate markers obtained from terrestrial sediments are frequently impacted by
local tectonic shifts and paleogeographic fluctuations. Plate tectonics, which regulates the arrangement of continents,
the interaction between the atmosphere and ocean, and the properties of Earth's orbit (Milankovitch cycles) are some of
the factors that affect the climate system on Earth. Based on data gleaned from the examination of geologic materials
global paleoclimate markers are developed. Generally, there are four types of paleoclimate markers: (1) Lithology [1-
3]. (2) Fossil content [4-6]. (3) Chemical composition [7-9]. (4) Geophysical properties [10]. Elements and isotopes that
record environmental data are among the geochemical markers [11,12]. Geochemists employ these markers to interpret
paleoclimate environments. Concentrations of Si, Al, K, Na, Mg, Ca, Fe, Mn, Ga, Cr, Ni, V, Co, Sr, Ba, Cu, Rb, and
REE can be used to determine paleoclimate [13-17]. In this work, the authors reviewed methods for evaluating
paleoclimate based on the concentration of major and trace elements.

Paleoclimate Markers

Chemical Index of Alteration

Numerous authors [e.g., 18 and 19] have extensively evaluated paleoclimatic conditions using the chemical index of
alteration (CIA = (Al,Os/(Al03+Ca0*+Na,0+K>0))100, [20]). There are three methods to calculate the concentration
of calcium oxide (CaO*) in the silicate fraction:

(1) CaO* = Caofcoz(calcite)*o-S X COZ(doIomite)—]-O/B X PZOS(apatite) [21]

(2) CaO* = CaO—P205, if Na20>CaO—P205, or CaO* = Nazo, if Na,O<CaO—P,0s [22]

(3) CaO* = Cao_sOs(anhydrite/gypsum) [23]

Shaltami & Ben Hkoma. Alq J Med App Sci. 2024;7(4):1187-1193 1187


https://journal.utripoli.edu.ly/index.php/Alqalam/index
mailto:osama.rahil@yahoo.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.54361/ajmas.247440
https://orcid.org/0009-0006-0890-9093

AlQalam
Alq J Med App Sci /
=
https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

Arid, semi-arid to semi-humid, and humid climates are characterized by CIA values of <70%, 70-80%, and 80-100%,
correspondingly [20]. [24] pointed out the limitations of the CIA, despite its usefulness in interpreting paleoclimatic
conditions. They believed that the existence of carbonate-rich sediments, post-depositional potassium addition, and the
hereditary of clays from the source area could restrict the reliance on the CIA as a paleoclimate parameter. They
suggested that the CIA is a valuable resource for determining paleoclimate conditions, if used with the proper caution.
In order to estimate climate changes, [25] demonstrated a positive correlation between land surface temperatures and
CIA on a global scale. The surface temperature can be ascertained using the following equation: T(°C) = 0.56 x
CIA—25.7 [26]. The correlation held true with an uncertainty of approximately +5 °C when CIA and T ranged from ~50
to 90% and ~3 to 25 °C, correspondingly [26]. A correlation between CIA and mean annual precipitation (MAP) without
K (CIA-K) was suggested by [27]: MAPCIAK = 221g00197CIAK) " This correlation was modified by [28] as follows:
MAPCIA - 16960'0271(C|A).

Climatic Index

The climatic index (C.I = (Fe+Mn+Cr+Ni+V+Co)/(Ca+Mg+Sr+Ba+K+Na), [15]) is utilized as a paleoclimate
reference. C.I also referred to as C-value. The underlying suggestion for C.1 is that, there is an increase in Fe, Mn, Cr,
Ni, V, and Co in humid environments; while in arid environments, saline minerals precipitate as water alkalinity
increases due to evaporation, resulting in the enrichment of Ca, Mg, K, Na, Sr, and Ba [7 and 15]. Humid, semi-humid,
semi-arid to semi-humid, semi-arid, and arid climates are represented by C.I values of >0.8, 0.6-0.8, 0.4-0.6, 0.2-0.4,
and <0.2, respectively [8 and 29].

KzO/A|203 Ratio

Feldspars and clay minerals can be distinguished using the K;O/Al,O; ratio. Feldspars have a higher ratio (0.3-0.9)
compared to clay minerals (0-0.3, [30]). Furthermore, the ratio in illite (0.2-0.3, [31]) is higher than that in kaolinite,
smectite, and vermiculite (nearly zero, [30]). Accordingly, humid conditions are characterized by low K,O/Al,O3 ratios
(<0.2), while the ratios are high in arid climates (>0.2, [32]).

Fe/Mn Ratio

The Fe/Mn ratio can be used to provide paleoclimatic evidence [33 and 34]. Mn concentration is low in humid conditions
where Fe is rapidly precipitated from colloidal iron hydroxides, whereas Mn content is typically high in arid climates.
Therefore, humid climates are linked to high Fe/Mn ratios (>1), whereas arid environments are characterized by low
ratios (<1) [33].

Al/Mg Ratio
The Al/Mg ratio can reveal information about the paleoclimate during deposition; low ratios suggest an arid
environment, while high ratios indicate a humid climate [33].

Mg/Ca Ratio
The Mg/Ca ratio is frequently used as a paleoclimate proxy in clastic rocks [33 and 35]. High ratios are generally
indicative of arid climates, whereas low ratios are characteristically reflective of humid climates [33].

Rb/Sr Ratio

The Rb/Sr ratio is a significant index of paleoclimate [36]. During weathering, Sr is depleted through leaching, whereas
Rb remains relatively stable. Sr is depleted and the Rb/Sr ratio rises (>0.5) as a result of increased precipitation and
increased weathering in humid climates. Since there is less precipitation, less weathering, and more Sr-rich rocks in arid
climates, the Rb/Sr ratio would be relatively low (<0.5) [36].

Sr/Cu Ratio

Paleoclimate studies have used the Sr/Cu ratio as a reliable indicator [37]. Similar to Rb, Cu does not change during
weathering. The typical Sr/Cu ratios for humid, semi-arid to semi-humid, and arid climates are 1.3-5, 5-10, and >10,
correspondingly [37].

Ga/Rb ratio

The paleoclimate system is often constrained by the Ga/Rb ratio [32]. In general, Ga is more abundant in kaolinite,
suggesting humid conditions, whereas Rb is more commonly found in illite, signifying an arid environment [38].
Consequently, the Ga/Rb ratio is high in humid conditions (>0.21), while arid climates show low ratios (<0.21) [32].

Shaltami & Ben Hkoma. Alg J Med App Sci. 2024;7(4):1187-1193 1188


https://journal.utripoli.edu.ly/index.php/Alqalam/index

AlQalam

Alq J Med App Sci l
\\_/—‘\'

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

Sr/Ba Ratio
Paleoclimate can be assessed based on the Sr/Ba ratio [34 and 39]. Climate has an impact on the Sr/Ba ratio; high ratios
(>1) represent arid conditions, while low ratios (<1) indicate humid climates [39].

Rare Earth Elements

REE are very sensitive to variations in the paleoclimate [40-42]. The most important parameters are XREE [42] and Eu
anomaly [40]. Eu anomaly can be calculated using the following equation: Eutound/EU*expected = EUN/(SMn X Gdn)®®. The
REE values used in this equation are shale normalized. For normalization, the Post Archean Australian Shale (PAAS,
[43]) and the North American Shale Composite (NASC, [44]) are utilized. Generally, humid climates display high XREE
[42] and large negative Eu anomaly [40]. According to [41], weak weathering of REE-bearing minerals would result in
weak secondary LREE-carrying product development and a drop in the (La/Yb)x ratio.

Discrimination Diagrams

Discrimination diagrams are the preferred method for more accurate paleoclimate evaluation. There are many
discrimination diagrams that depend on the paleoclimate markers, such as the binary plots of K,O+Na,O+Al,O3 versus
Si0O; (Fig. 1), ClIA versus C.I (Fig. 2), K:O/Al,O3 versus Ga/Rb (Fig. 3), Fe/Mn versus Sr/Ba (Fig. 4), and Rb/Sr versus
Sr/Cu (Fig. 5), and the triplot of Mg/Ca-Al/Mg-ZREE (Fig. 6).
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Figure 1. Binary plot of CIA vs. C.1I [after 8, 20, and 29].
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Figure 2. Binary plot of CIA vs. C.I [after 8, 20, and 29].
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Figure 6. Triplot of Mg/Ca-Al/Mg-2ZREE [after 33 and 42].

CONCLUSION

Two conclusions can be drawn from this work: (1) Numerous markers, including CIA, C.1I, K.O/Al,O3, Al/Mg, Mg/Ca,
Fe/Mn, Rb/Sr, Sr/Cu, Ga/Rb, Sr/Ba, XREE, and Eu anomaly, can be used to determine the paleoclimate of sediments.
(2) The best approach for a more precise assessment of paleoclimate is to use discrimination diagrams such as the plots
of K;0+Na,O+Al,03 versus SiO,, CIA versus C.1, K,O/Al>,O3 versus Ga/Rb, Fe/Mn versus Sr/Ba, Rb/Sr versus Sr/Cu,
and Mg/Ca- Al/Mg-XREE.
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