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INTRODUCTION

Ordinary nonlinear differential equations are common in various fields such as physics, engineering, and biology, as
they reflect complex dynamic systems for which traditional analytical solutions are often difficult to find. Therefore,
numerical methods have become essential tools for approximating solutions to these equations. This research focuses
on four main numerical techniques: the Heun method, the midpoint method, the Ralston method, and the fourth-order
Runge-Kutta method (RK4) [1-8].

Heun's Method

The Heun method is a second-order technique within the Runge-Kutta methods and is considered an improvement over
the Euler method. This method relies on making an initial prediction based on the first slope, which is then refined using
the second slope calculated at the predicted point. This two-step process enhances accuracy while maintaining relatively
low computational effort [15,22].

Midpoint Method

The midpoint method offers second-order accuracy by evaluating the function at the midpoint of the interval. This
method is characterized by its ability to capture the dynamics of the solution more effectively compared to simple
methods, contributing to improved estimates while maintaining ease of implementation [9,23].

Ralston's Method

The Ralston method is a second-order technique that relies on using specific weights for the slope, achieving a balance
between accuracy and computational costs. This method calculates two slopes and then combines them to obtain an
updated solution, making it suitable for problems that require a moderate level of accuracy [17-19].
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Fourth-Order Runge-Kutta Method (RK4)

The RK4 method is widely recognized for its high accuracy in solving ordinary differential equations. This method
relies on calculating four slopes and then combining them using specific coefficients to achieve fourth-order accuracy.
It is particularly effective in dealing with complex equations, providing a robust framework for obtaining precise
solutions over extended time intervals. [14,20,21].

Definition:
The differential equation of the form [11,12,16]

d
A+ Py =Qx)y" (1)
is called a Bernoulli differential equation.

Note: It is important to mention that when n = 0 or 1, the Bernoulli equation becomes a linear equation. In fact, we can
transform a Bernoulli-type differential equation into a linear differential equation using the following method.

Theorem. Suppose n # 0 and n # 1. Then the transition v = y'™™ He seeks to simplify the Bernoulli differential
equation. % + P(x)y = Q(x) y™ To alinear equation related to v. Notice that if

v =yl™ then
dv/dx =(1—-n)y "dy/dx (2

ANALYSIS OF METHODS

Heun Method: [15,20]

The Heun method is an explicit numerical technique for solving first-order ordinary differential equations. This method
is considered simple and consists of two steps, as it improves upon the Euler method by taking the average of the slopes:

Start from the initial point (o, yo)
Calculate the slope at the current point ki =f(tyyn) 3)
Estimate the next point k, =f(t,+h,y, + hky) 4

Update y using the average of the slopes

Yne1 = Y +3 (kg + k) (5)
Midpoint Method: [9,10, 21]
The Midpoint method, also known as the improved Euler method, is another second-order accurate method for solving
ordinary differential equations:
Start from (&g, yo)

Calculate the slope at the current point ki = f(t,, y,) (6)
Estimate y at the midpoint Ymid = Yn T §k1 (7)
Calculate the slope at the midpoint k, = f(t, + g YVmid) (8)

Update y using the slope at the midpoint
Yn+1 = Yn T hk; 9)
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Ralston’s Method [13,18]
Ralston's method is another second-order method that uses a weighted average of two different slopes to achieve higher
accuracy:
Start with (tg, ¥o)
Compute ki =f(t,ya) (20)
3h 3
ky = f(tn+5, Yn + 3 hky) (12)
Update y using a weighted combination of k4 and k,
h
Yn+1 = Yn + 35 (ky + 2k3) (12)
Fourth-Order Runge-Kutta Method [19, 20, 21]
The fourth-order Runge-Kutta (RK4) method is one of the most widely used and accurate techniques for solving ordinary
differential equations:

Start from (&g, yo)

Calculate the four slopes

kl = f(tn: yn) (13)
ky = f(ty+5,Yn+3k) (14)
ks = f(ty+5,Yn+3k2) (15)
ks = f(ta + h,yn + hky) (16)

Update y using a weighted average of all four slopes
h
Y1 = Yn + g (kg + 2ky + 2k3 + ky) (17)

NUMERICAL RESULTS

Each of these methods has unique advantages and is suitable for various problems in the field of numerical analysis.
The choice of the appropriate method depends on the specific characteristics of the differential equation to be solved,
as well as the required level of accuracy. We will present some examples, where MATLAB will be used to compute all
the results.

Examplel: Consider the Bernoulli differential equation
2=y +xyl/2 (18)

dx

with initial condition y(0) = 1. Its general solution is given by

y(x) = (€2 — x — 2)? (19)
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Table 1. The scheduling error rates include techniques such as the Heun method, the Midpoint method, the Ralston method,
and the fourth-order Runge-Kutta method, in addition to the exact solution of the problem in question on h = 0.1.
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Figure. 1: Approximate Solution
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Example 2: Consider the Bernoulli differential equation
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Figure. 2: Exact Solution

@ _ 3,3 _
XY —xy (20)
with initial condition y(0) = 1. Its general solution is given by
() = —— @1)
yW) = (1+x2)
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Table 2. Scheduling of Heun's methods, the midpoint method, Ralston's methods, and fourth-order Runge-Kutta methods, in
addition to the exact solution for the second example on h = 0.1

h X Exact Heun Midpoint Ralston’s RK th4
01 01 9.900990 e-01 9.950500e-01 9.950125 e-01 9.950281e-01 9.950371 e-01
01 02 9.615384 e-01 9.806545e-01 9.804887 e-01 9.805659¢-01 9.805805 e-01
01 03 9.174311 e-01 9.579993e-01 9.576429 e-01 9.578139%-01 9.578261 e-01
01 04 8.620689 e-01 9.287712e-01 9.281988 e-01 9.284773e-01 9.284764 e-01
01 0.5 8.000000 e-01 8.948478e-01 8.940668 e-01 8.944503e-01 8.944268 e-01
01 06 7.352941 e-01 8.580302e-01 8.570678 e-01 8.575432¢-01 8.574925 e-01
01 07 6.711409 e-01 8.198675e-01 8.187579 e-01 8.193084e-01 8.192314 e-01
01 038 6.097560 e-01 7.815814e-01 7.803550 e-01 7.809656e-01 7.808683 e-01
01 09 5.524861 e-01 7.440642¢-01 7.427418 e-01 7.434020e-01 7.432936 e-01
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Figure 3. Compare Approximate Solutions and Exact Solution for Example 2
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Solution of the Bernoulli Equation using Ralsons Method
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Figure. 4: Compare Approximate Solutions and Exact Solution for Example 2
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Figure. 5: Compare Approximate Solutions and Exact Solution for Example 2
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Figure. 6: Compare Approximate Solutions and Exact Solution for Example 2
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Example 3: Consider the Bernoulli differential equation

d
—di’ = 2xy + 2x3y? (22)
with initial condition y(0) = 1. Its general solution is given by
(x) = L 23
y X) = (1_x2) ( )

Table 3: The scheduling of Heun, Midpoint, Ralston’s, fourth-order RK methods, and Exact Solution for Example 3 on

h=0.1.

h X Exact Heun Midpoint Ralston’s RK th4
01 0.1 1.010101 1.010100 1.010025 1.010056 1.010101
01 0.2 1.041666 1.041762 1.041334 1.041534 1.041666
01 03 1.098901 1.099200 1.098017 1.098582 1.098901
01 04 1.190476 1.191092 1.188443 1.189717 1.190477
01 05 1.333333 1.334315 1.328745 1.331430 1.333335
01 0.6 1.562500 1.563418 1.551479 1.557231 1.562505
01 07 1.960784 1.958217 1.930123 1.943609 1.960790
01 0.8 2777777 2.745283 2.664861 2.703140 2.777585
01 0.9 5.263157 4.847882 4.506619 4.665764 5.248673

Table 4: Tabulation Heun, Midpoint, Ralston’s, and RK th4 error methods with the Exact solution for Example 3 on h = 0.1

H X Exact Abs. Error Abs. Error Abs. Error Abs. Error
Heun Midpoint Ralston’s RK th4

01 01 1.010101 1.000000e-06 7.525000e-05 4.431249¢-05 4.122993e-08
01 0.2 1.041666 9.219737e-05 3.189751e-04 1.270442e-04 1.707306e-07
01 0.3 1.098901 2.726972e-04 8.043720e-04 2.903775e-04 4.214655e-07
01 04 1.190476 5.174764e-04 1.707634e-03 6.375365e-04 8.823297e-07
01 05 1.333333 7.364984e-04 3.441058e-03 1.427066e-03 1.762172e-06
0.1 06 1.562500 5.881337e-04 7.053272e-03 3.371750e-03 3.352860e-06
01 0.7 1.960784 1.308959¢-03 1.563680e-02 8.758906e-03 2.972069e-06
0.1 08 2.777777 1.169794e-02 4.065000e-02 2.686932e-02 6.925501e-05
01 09 5.263157 7.890228e-02 1.437423e-01 1.135046e-01 2.752018e-03
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Solution of the Bernoulli Equattion using Runge-Kutta Methods
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Figure. 7: Compare Approximate Solutions and Exact Solution for Example 3

CONCLUSION

This study highlights the effectiveness of various numerical methods in solving nonlinear equations. By understanding
the strengths and weaknesses of each method, the study compares the efficiency and accuracy of these approaches
through numerical experiments on a variety of nonlinear differential equations. The results indicate that the RK4 method
generally provides the highest level of accuracy, while the Heun, midpoint, and Ralston methods are useful in specific
applications where computational resources are limited. Practitioners can choose the most suitable method for their
specific problem, balancing accuracy and computational efficiency. Future studies could explore hybrid methods that
combine the advantages of these techniques to enhance performance.
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