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INTRODUCTION
The fuzzy sets on hyperstructures were first introduced by Zadeh in 1965 [1]. The fuzzy sets and algebraic

hyperstructures have been considered by, Abou-Zaid [2], Davvaz [3] and others. Fuzzy hyperideals of hypernear-
rings are a notion that Davvaz presented along with certain associated properties.

Fuzzy hyperideals of hypernear-rings are a notion that Davvaz presented along with certain associated

properties. In this work, we will discuss relationships between fuzzy subset and level set on near-ring (hypernear-ring)
respectively.

Near-ring
Definition 1.1.[6] A left near-ring is an algebraic structure (N, +, . ) which satisfies the following axioms:

(i) (N, +)isagroup (not necessarily abelian),

(ii) with respect to the multiplication, (N, . ) is a semi-group,

(iii) the multiplication is distributive with respect to the addition on the left side, i.e.,z .(x+y)=z.x+z. yfor

allx,y,ze N
Or right near-ring if satisfies the right distributive law.
(x+y).z=x.z+y.z forallx,y,z e N.

The term "near-ring™ will be used to refer to "left near-ring."
Example 1.2. (Zs, +) is a group under ‘+’ modulo 8.
Define'.'on Zg by a. b =aforall a,b €Zs. Clearly (Zs, +, .) is a near-ring.
Definition 1.3.[4]A subgroup M of an near-ring N with M.M =M is called a subnear-ring of N, ( M <N). A subgroup
Sof Nwith N. S < S is called a normal subgroup of N,(S 2 N).

Hyper near-ring
Definition 2.1.[6] Let H be a nonempty set. Amap o : H x H — P*(H) is called hyper-operation, P*(H) is the family
of all nonvoid subsets of H.
Definition 2.2.[9] The triple (R, +, .) is a hypernear-ring if:
)i (R,+) satisfies the following axioms:
(D) x+(y+z)=(x+y)+zforanyx,y,z€€eR.
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(2) 30eRst.foranyxeR,x+0=0+X=X.
(3) for any x € R, there exists a unique element —x € R, such that
0 € x+(—x) N —x +X.
(4) forany x,y,z €R, z € x+y implies that x € z+ (-y) ,y € — x +z.
1)) (R, -) is a semi-group endowed with a two-sided absorbing element 0, i.e . forany x € R, x-0 = 0-x =0.
1)) The operation ' - " is distributive with respect to the hyperoperation ' + ' from the left side: For many x,y,z €R,
X- (y+z) =Xy + X-z,
Definition 2.3.[7] Let (R,+, -) be a hypernear-ring. A non-empty subset H of R is called a subhypernear-ring if
(1) (H, +) is a subhypergroup of (R, +), i.e., a, b € Himpliesa + b € H, and a € H implies —a € H,
(2) abe H, for all a, b € H.
Example 2.4.[9] Let R = {0, a, b, ¢} be a set with a hyperoperation “+” and a binary operation “-” as follows:

Table 2.1 Table 2.2
+ 0 a b c 0 a b c
0 {0} {a} {b} {c} 0 0 a b c
a {a} {0,a} {b} {c} a 0 a b c
b {b} {b} {0,ac} | {bc} b 0 a b c
c {c} {c} {b,c} | {0,a,b} c 0 a b c

Then (R,+, -) is a hypernear-ring, and {0}, {0, a}, and R are subhypernear-rings of R.

Fuzzy structure
Definition 3.1.[8] A fuzzy subset of X is a function u: X — [0, 1]. The set of all fuzzy subsets of X is called the fuzzy
power set of X and is denoted by FP(X). Fort € [0, 1], define p as follows:
pe={X|x € X, w(x) >t}. ut is called the t-level set of p.
Example 3.2. In Example 2.4. R = {0, a, b, c}, define a fuzzy subset :R—[0,1] by : u (0)=1, u(a) = 0.7, w(b)= u(c) =
0.3.
Note that poss= {X €U | u(x) > 0.45} = {0, a} and po= R.
Definition 3.3.[7] Let N be a near-ring and p be a fuzzy subset of N. We say u a fuzzy subnear-ring of N if for all x,
yeN,
(1) p(x —y) 2 min {u(x) , u(y)},
(2) w(xy) > min {p(x) , p(y)} .
Theorem 3.4. Let N be a near-ring and p be a fuzzy subset of N. Then the level subset w: (# ¢) is a subnear-ring of N

forallt € (0, 1] if and only if p is a fuzzy subnear-ring of N.
Proof. Let . is a subnear-ring of N .
Let x,y eNand putting to = min {p (x), u (y)} then x, y ep,
= u(x)=t0,pu(y)= to,and since pt is a subnear-ring of N, hence Xyep ,andso p(xy)= t0=min {p (x), pu(y)},
also, X —y epg, O
i (x—y)= to=min {p (x), u (y)}, therefore p is fuzzy subnear-ring.
Conversly , Let p is fuzzy subnear-ringand t € (0, 1], ut (# ¢)
Letx,yew=pnx)>t,u(y)>t,thenmin {pu (x), n(y)} > t.
And  p(xy)> min {u(x), p(y)} > t(since p is fuzzy subnear-ring )
Thererfore Xy =pu:, hence p. it < . Thus, e is a subnear-ring of N. m
Definition 3.5.[5] Let (R, +, -) be a hypernear-ring. Then we call a fuzzy set u of R a fuzzy subhypernear-ring of R if
it satisfies the following inequalities:
(1a) min {u(x) , p(y) } < infyeyyyu(z) forallx,y e R,
(1b) W(x) < (- x) forall x e R,

(2) min {u(x) , Wy) } < wxy) forall x,y € R.

Theorem 3.6. A fuzzy set u of R is a fuzzy subhypernear-ring of R if and only if forany t € [0, 1], w (# ¢) is a sub-
hypernear-ring of R.
Proof. Let u is a fuzzy sub-hypernear-ring andt < [0,1], us # 0
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Ifx,yeyy = pux) =2t , = ul)=>t
Hence infu (z) = min{ u (x),u (y)} =t whereze x+y
Therefore, forall z € x + y we have z ey, and so X +y cu,
Thus u; is sub-hypernear-ring of R
Conversely, let y, is sub-hypernear-ring of R
Letx,y e Rand putting t0= min{u (x) , u (y)} then X,y ep;,
Since u, is sub-hypernear-ring of R
s X+ycpu, = foranyz e x+y, z ey, Which implies that
inf u(z) = to =min{ px),u(y)} whereze x+y
and since pt is a sub-hypernear-ring of R, hence xy € u;
H(xy) = to =min{p(x),un ()}

Thus p of R is a fuzzy subhypernear-ring of R.m
Example 3.7. In Example 2.4., and Example 3.2.

R ,t€(0,0.3]

ut =<{0,a} ,t € (0.3,0.7]

{0} ,te (0.7,1]

Clearly, all ut are subhypernear-ring of R, and p is a fuzzy subhypernear-ring of R.

CONCLUSION

In this paper, the following has been proven that the level set of near-ring is a subnear-ring if and only if the fuzzy set
is the fuzzy subnear-ring. A fuzzy set of hyper near-ring is a fuzzy hypernear-ring if and only if level set is a sub-
hypernear-ring.
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