AlQalam

Alq J Med App Sci l
|\ S

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

Original article

Implementation of Artificial Neural Networks on Field-
Programmable Gate Arrays

Salim Adrees'*", Ala Abdulrazeg?, Wafa Shuaieb?

1Department of Computer Engineering, Faculty of Engineering, Omar Al-Mukhtar University, Al-Bayda, Libya
2Department of Electrical & Electronic Engineering, Faculty of Engineering, Omar Al-Mukhtar University, Al-Bayda, Libya

ARTICLE INFO
Corresponding Email. Salim.ali@omu.edu.ly ABSTRACT

Implementing Artificial Neural Networks (ANNS)
on Field-Programmable Gate Arrays (FPGAS)

Received: 01-08-2024 provides a promising solution for achieving high-
Accepted: 29-09-2024 performance, low-latency, and energy-efficient
Published: 02-10-2024 computations in complex tasks. This paper

investigates the methodology for mapping ANNs
onto FPGAs, focusing on critical aspects such as
architecture selection, hardware design, and
Keywords. Neural Network, FPGA, Artificial Intelligent, Verilog, optimization techniques. By harnessing the
Hardware Design. parallel processing capabilities and
reconfigurability of FPGAs, neural network
computations are significantly accelerated,
making them ideal for real-time applications like

Copyright: © 2024 by the authors. Submitted for possible open access image processing and embedded systems. The
publication under the terms and conditions of the Creative Commons implementation ~ process addresses key
Attribution International License (CC BY 4.0). considerations, including fixed-point arithmetic,
http://creativecommons.org/licenses/by/4.0/ memory management, and dataflow optimization,

while employing advanced techniques such as
pipelining, quantization, and pruning. The
research compares the accuracy and
performance speedup of ANNs on CPUs versus
FPGAs, revealing that FPGA-based simulations
are 4680 times faster than CPU-based
simulations using MATLAB, without
compromising prediction accuracy.

Cite this article. Adrees S, Abdulrazeg A, Shuaieb W. Implementation of Artificial Neural Networks on Field-Programmable Gate

Arrays. Alg J Med App Sci. 2024;7(4):927-933. https://doi.org/10.54361/ajmas.247405

INTRODUCTION

Artificial intelligent is now a driving force behind various technologies used in websites, cameras, and smartphones. It
is often implemented to identify objects in images and extract them for further processing. The general approach of
machine learning involves taking a real dataset and applying algorithms such as deep learning [1], neural networks [2],
the Perceptron algorithm [3], K-nearest neighbor [4], decision trees [5], among others. Among these, ANN has emerged
as one of the most dominant techniques. ANNSs excel in extracting and analyzing data, allowing them to effectively
establish relationships between inputs and outputs.

Artificial Neural Networks

Artificial Neural Networks (ANNs) have emerged as a pivotal technology in the field of artificial intelligence (Al),
driving advancements across numerous domains including computer vision, natural language processing, and
autonomous systems. Inspired by the intricate networks of neurons in the human brain, ANNs are designed to simulate
the way biological systems process information, offering a powerful framework for addressing complex computational
tasks that traditional algorithms struggle to handle [6-8].

The resurgence of interest in ANNSs over the past decade can be attributed to several key developments. First, the
exponential growth in computational power, facilitated by the advent of Graphics Processing Units (GPUs) and
distributed computing, has made it feasible to train large-scale neural networks. Second, the availability of massive

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 927

https://journal.utripoli.edu.ly/index.php/Alqalam/index
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.54361/ajmas.247405
https://orcid.org/0000-0002-9096-8941

AlQalam
Alq J Med App Sci l
\\/—‘\'
https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

datasets, driven by the proliferation of digital data in various sectors, has provided the necessary fuel for training deep
neural networks. Finally, innovations in learning algorithms, particularly the backpropagation algorithm and its variants,
have significantly improved the training efficiency and generalization capabilities of ANNs [9].

Structure of an ANN

A General Artificial Neural Network (ANN) is a computational model inspired by the structure and function of the
human brain. It consists of interconnected layers of nodes (neurons), which work together to process information and
make predictions or decisions. Figure 1 shows the general ANN model architecture.

Input Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer
@ @ ®
Input #1
@ & @
Input #2
2 ® @
Input #3) 5 : Output #1
@ e e
Input #4 4 Output #2
@ @ =
Input #5) ’ Output #3
: ® ® ©
Input #6 A Output #4
@ W7 ©
Input #7 3 Y
@ L @
Input #8 3 3 3
@ [®

Figure 1. General ANN Model architecture

e Input Layer: This layer receives the input data. Each neuron in this layer represents a feature or attribute of the
input data.

e Hidden Layers: These layers process the inputs received from the input layer. An ANN can have one or multiple
hidden layers, and the neurons in these layers apply various transformations to the data using activation
functions.

e Output Layer: This layer produces the final output. The number of neurons in the output layer depends on the
classes of the application.

Software implementation
The application which will be addressed in this paper is digit recognition. The dataset is self-made binary digit dataset.
The number of classes are 5 classes (1 : 5) which are represented as shown in Figure 2.

10011 0 000D01 0 0001
1 1011 1 1110 1 1110
11011 10001 0 00 Obl . s »
11011 0 1111 11110
1 0001 1 0000 0O 0000

1 2 3 ae- -

Figure 2. Dataset description

Every input image is (5 x 5) binary array, every bit will be an input of each neuron in the input layer, the image will be
reshaped to be (25 x 1). A fully connected 5 layers ANN will be implemented in this application as shown in Figure 3.

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 928

https://journal.utripoli.edu.ly/index.php/Alqalam/index

AlQalam

Alq J Med App Sci l
_/—‘\'

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

Input layer Hidden L. 1

[Binary image (ss) = Reshap (bpsyy) |——

RelLU(W41 paoy251 * Bpzsyzg) ﬁ’

Hidden L. 2 Hidden L. 3

_p[ReL U(W3 pagyzep * H.L. I 2017) — >

ReLU(W3 poj0p* H.L. 22017) 7

Output L Pradiction

Softmax(W 200 * H.L.2 20y117) }—bl Qg

Figure 3. Flowchart of the software implementation of ANN

—

The first layer is an input layer which consist of 25 inputs corresponding to the number of bits in the binary image. The
second layer is the first hidden layer consist of 20 neurons with Rectified Linear Unit (ReLU) activation function. The
corresponding equation in this layer is represented in Equation 1.

Hidden L.1;30)11) = ReLU (W15, * bi2s)ia)) Equation 1

The ReLU activation function is one of the most popular in neural networks. ReLU is defined as being zero for all inputs
below a certain threshold (usually zero) and linear for inputs above that threshold. The function can be mathematically
expressed in Equation 2[10].

ReLU(x) = max(0,x) Equation 2

The second and the third hidden layers consist of 20 neurons and follow the same mathematics as the first layer. Equation
3 and Equation 4 represent the mathematical equations of layer 2 and layer 3 respectively.

Hidden L.20)1) = ReLU (W5, * Hidden L 1j50)y7) Equation 3

Hidden L.3p)1) = ReLU (W35, * Hidden L.250:17) Equation 4

The final layer is the output layer consists of 5 neurons, The corresponding equation in this layer is represented in
Equation 5.

Output L.;5)(1) = Softmax (W4[5] [20] * Hidden L. 3[20][1]) Equation 5

Softmax is commonly used in the output layer of a classifier when dealing with more than two categories. The function
can be mathematically expressed in Equation 6 [11].

Sotmax (z); = ¢ .
: Z}‘:l eZ

Converting the following equation to MATLAB code, train the module to find the evaluation characteristics and then
test the module to find the validation characteristics and finally apply profiling function to find the execution time in
CPU. The results show that evaluation accuracy of the module reached 96% and validation accuracy of the module
reached 92%. Figure 4 shows the execution time in MATLAB, and the results show that it took 0.003 s to find the output
of a given image.

Equation 6

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 929

https://journal.utripoli.edu.ly/index.php/Alqalam/index

AlQalam

Alq J Med App Sci l
_/—‘\'

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

Line Number Code Calls Total Time (s)

load('DeepleuralNetwork.maz’)

0.001

final output = Softmax(input of output node);

0001

£ hidden layerl = RelU(input of hidden_layerl);

0 000

1
1
e '_‘!_h:‘iie:_l\','—:‘. - F".',‘lLr,'-;'._:!_.'x;'H'n_ln','n:lv: 1 0 000
1
1

18 irput_Image = reshape (input_Image, 25, 1): 0 000

All othar ines 0000

Totals 0003

Figure 4. Execution time in MATLAB

Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAS) represent a versatile and powerful technology in digital design and embedded
systems. Since their introduction in the mid-1980s, FPGAs have become essential components across diverse
applications, including telecommunications, automotive systems, high-performance computing, and artificial
intelligence. Unlike Application-Specific Integrated Circuits (ASICs), which are tailored for a single function, FPGAs
offer reconfigurability, enabling designers to modify hardware configurations even after manufacturing. This
adaptability, combined with their parallel processing capabilities, makes FPGAs invaluable for creating custom
hardware solutions tailored to specific needs.

The growing complexity of digital systems, alongside increasing demands for higher performance and lower power
consumption, has accelerated the adoption of FPGAs across various industries. Their reconfigurability allows for rapid
prototyping, iterative design, and the implementation of complex algorithms directly in hardware, circumventing some
limitations of traditional software approaches. Moreover, FPGASs are increasingly utilized in areas like deep learning
acceleration, real-time data processing, and edge computing, where they deliver significant advantages over general-
purpose processors in terms of latency, throughput, and energy efficiency.[12-14].

FPGA implementation

Hardware design of the module is implemented in Vivado Design Suite. it is a comprehensive software suite for the
synthesis and analysis of hardware description language (HDL) designs. It supersedes Xilinx ISE, offering enhanced
features for system-on-chip (SoC) development and high-level synthesis. Unlike its predecessor, Vivado represents a
complete ground-up rewrite and rethinking of the entire design flow, providing a more efficient and integrated
environment for modern hardware design. The programming language used in Vivado is Verilog HLS. The hardware
design will be able to accept a 25 bits binary image and predict the correct digit, which means that the testing algorithm
will be converted to hardware design. After train the module in MATLAB, the learned weights will be exported to
Vivado. The design will be implemented with behavioral modeling style. The flowchart is shown in Figure 5.

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 930

https://journal.utripoli.edu.ly/index.php/Alqalam/index

AlQalam

Alq J Med App Sci l
Q____——;:d’

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

rst
ﬁl\-
Sy

W1 [20][z5] » Wa [z0]f20] » W3 [z0][20)s
Wi [s][a0] » INput_imgysys)
e No

5 Yes

H.L1" [ag)pa7 <= Wi [agfras]* input_imgsjpsy

done=0

S Y

HL1 gy <= ReLU(H.L1')
Sa ¥

HLL 2" ey <= Waagifzo] * HLL 1 pagjr]
Ss Y

H.L 2 gy == ReLU (H.L2' fjpyy)
Ss Y

H.L 3" ey <= W [aojfz0] * HLL 2 pagjr]
S5 Y

H.L 3 pygjy) == ReLU (H.L3" pjpyg)
S Y

H.L 4" [s][1] <= Wa[s]fz0] * HL 3 frojfy]

s Y

Qi <= Softmax (HL4') |
done =1

Figure 5. Flowchart of Hardware Implementation

The design operates at a clock frequency of 100 MHz, which corresponds to a 20 ns clock cycle. Behavioral modeling,
the highest level of abstraction in Verilog, has been employed for this project. This approach enables the implementation
of the module based on the desired design algorithm without focusing on specific hardware details like the number of
adders, multipliers, or dividers needed. The Vivado software tool was used to create an Algorithmic State Machine
(ASM) chart for the entire design. The module has been successfully synthesized in Vivado and is now ready for testing
with a 5x5 binary image. MATLAB was used to test the module, and the output predictions, shown in Figure 6, indicate
that the module correctly identifies the digit "1" in the image

final output =

-0000
-0000
-0000
.00o00
0.0000

[T T T

Figure 6. Results of a given image

By taking the same image and implement it in Vivado design suite to test the module and confirm the accuracy of the
hardware design, the result is shown in Figure 7.

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 931

https://journal.utripoli.edu.ly/index.php/Alqalam/index

-~

- AlQalam

Alq J Med App Sci l
\&/—\\'

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

0 ns 100 ns 200 ns 300 ns 400 ns 500 ns
I I Ll I \ I Ll L | | - Ll 1 1 { | - | - I Ll 1 1 | —— l L
)
]
| |
00000000 A0 A0 000 foo {0 {0 koo, | 0100000000
I I I
RO X 00001
I 1 I I I
X X 1
1 1 I 1
X b 0
1 1 1 1 1
X X 0
I I I I I
X) 0
I 1 I 1 I
X X 0

Figure 7. Results of the hardware implementation

The results indicate that the outputs from MATLAB Figure 6 and the Vivado Design Suite Figure 7 are identical,
confirming that the hardware implementation has been correctly designed and synthesized. Additionally, when testing
the module with five different binary images, the outputs in both MATLAB and Vivado were consistent, further
validating the design's accuracy.

The second aspect of the evaluation focused on execution time. The timing simulation in the Vivado Design Suite
revealed that the output delay is 200 ns, corresponding to 10 clock cycles. This demonstrates a significant improvement
in timing performance. Table 1 compares the timing simulation between the CPU and FPGA, showing that the FPGA
simulation is 4680 times faster than the CPU simulation.

Table 1. comparison between CPU and FPGA timing simulation

CPU FPGA
0.003 s (150000 clock cycles) 200 ns (10 clock cycles)

Timing

CONCLUSION

One of the most challenging aspects of this paper is exporting inputs from the MATLAB implementation due to the
complexity of the code. Additionally, working with fixed-point numbers is generally easier and more efficient than using
floating-point numbers. Implementing floating-point arithmetic in hardware requires IP cores, which can consume many
clock cycles. However, using fixed-point numbers does not significantly impact the results, as the introduced error is
negligible. The FPGA module was designed using behavioral modeling, a style that abstracts away specific hardware
details like the number of adders, multipliers, and registers. The software tool automatically determines these resources,
which is a key advantage of this modeling approach. However, a significant drawback is that behavioral designs can be
challenging for the software tool to synthesize and translate into a hardware design. If the module is highly complex,
behavioral modeling may not be the most suitable choice. Finally, in real-time applications, execution time is critical.
For certain algorithms, implementing the most critical parts in an FPGA can minimize output delay without
compromising the accuracy of the results.

Conflict of interest. Nil

REFERENCES

1. LeCunY, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44; doi: 10.1038/nature14539.

2. Muthuramalingam A, Himavathi S, Srinivasan E. Neural Network Implementation Using FPGA: Issues and Application.
Int J Inform Technol. 2007;4.

3. Taright Y, Hubin M. FPGA implementation of a multilayer perceptron neural network using VHDL. ICSP '98 1998 Fourth
International Conference on Signal Processing (Cat No98TH8344). 1998;2:1311-4 vol.2.

4. Li Z-H, Jin J, Zhou X-g, Feng Z-H. K-nearest neighbor algorithm implementation on FPGA using high level synthesis.
2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). 2016:600-2.

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 932

https://journal.utripoli.edu.ly/index.php/Alqalam/index

AlQalam

Alq J Med App Sci l
|\ S

https://journal.utripoli.edu.ly/index.php/Algalam/index elSSN 2707-7179

5. Narayanan R, Honbo D, Memik G, Choudhary A, Zambreno J: Interactive presentation: An FPGA implementation of
decision tree classification. In: Proceedings of the conference on Design, automation and test in Europe. Nice, France:
EDA Consortium; 2007: 189-94.

6. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in
pharmaceutical research. Journal of pharmaceutical and biomedical analysis. 2000;22(5):717-27.

7. Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. Backpropagation and the brain. Nature Reviews Neuroscience.
2020;21(6):335-46.

8. Hecht-Nielsen R. Theory of the backpropagation neural network. In: Neural networks for perception. Elsevier; 1992. p.
65-93.

9. Talib MA, Majzoub S, Nasir Q, Jamal D. A systematic literature review on hardware implementation of artificial
intelligence algorithms. The Journal of Supercomputing. 2021;77(2):1897-938.

10. Bai Y: RELU-function and derived function review. In: SHS Web of Conferences. vol. 144: EDP Sciences; 2022: 02006.

11. Kouretas I, Paliouras V: Simplified hardware implementation of the softmax activation function. In: 2019 8th international
conference on modern circuits and systems technologies (MOCAST). IEEE; 2019: 1-4.

12. Wang C, Luo Z. A review of the optimal design of neural networks based on FPGA. Applied Sciences. 2022;12(21):10771.

13. Yang H, Zhang J, Sun J, Yu L. Review of advanced FPGA architectures and technologies. Journal of Electronics (China).
2014;31(5):371-93.

14. Adrees SA, Abdulrazeg AA. Capsule Network Implementation On FPGA. Journal of Pure & Applied Sciences.
2020;19(5):50-4.

daca_ull ALAAY culyl gl il ghiaa
Zoupdi pld g T35 2 g3 okl G)2 all

L celianl) 5 CEON| VY-S PINEN cduaigl) A “,1}»:1;]\ s (».ﬁl
L) eslimndl o Ul pae Gaals chussigh S i 5 SSIYT 5 Aol 6] usigl) ansi?

ol

Glalee (gail 1ae) o Sla Gilase Ao 5l AL L)) cld gi can Ao duclih (V) A aal) K &) gulai i g
S Gada Apmgia (e Canall 138 (388 el algall 8 48U aladiin) 8318 8 (e) g £aY1 e Ayl
Al sl Jie da el calsal) e 58 5l aa clilage dava all ALEN L)) il siian e delihaY) duiaal)
daa ale) g4) slall dadlaal) <l)38 e BALEELY) DA (e a4 9 STV 3 plal) arasal g araail)
Altia Lelany Laa ¢ oS JS 5 A aall 28, Al Gls lhlee @ p oy Ll Al AL L) gall a8 e
aliall (amy Joii danill dglee Aieaal) Ladail) 5) sall Aadlee Jie dpdaalll dlai W) callats 3l culiydail
Jia Al S aladiu) ae eclibull (3833 Cpua s 65 SIAN B lal 5 ey Sl slac W)l @lld 6 Lay)
e A ol Ao g A8y Canl) ())18y Aaddiunal) i SISV cilan 1) Julii g a5 g A Adee e S dud
¢ Giilane daall ALY byl gl ild gime cilan g Jikie 43 35S pal) dadleall cilaa e de likaia¥) dpaell cASLAY
Gk (00530 4680 Jlaies g il Lilage dae pll AL bl sall i gima e da)l sal) Gada 0 a5 Sum
LL}\A)A.J\ 48y ‘_A.c adadla) & ¢ MATLAB (—;\J;lu_i :\:1)5)43\ Aalladll 3da g ‘_AL Q\:MJJUAJ\

s A

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 933

https://journal.utripoli.edu.ly/index.php/Alqalam/index

