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ABSTRACT 

Implementing Artificial Neural Networks (ANNs) 

on Field-Programmable Gate Arrays (FPGAs) 

provides a promising solution for achieving high-

performance, low-latency, and energy-efficient 

computations in complex tasks. This paper 

investigates the methodology for mapping ANNs 

onto FPGAs, focusing on critical aspects such as 

architecture selection, hardware design, and 

optimization techniques. By harnessing the 

parallel processing capabilities and 

reconfigurability of FPGAs, neural network 

computations are significantly accelerated, 

making them ideal for real-time applications like 

image processing and embedded systems. The 

implementation process addresses key 

considerations, including fixed-point arithmetic, 

memory management, and dataflow optimization, 

while employing advanced techniques such as 

pipelining, quantization, and pruning. The 

research compares the accuracy and 

performance speedup of ANNs on CPUs versus 

FPGAs, revealing that FPGA-based simulations 

are 4680 times faster than CPU-based 

simulations using MATLAB, without 

compromising prediction accuracy.  

Cite this article. Adrees S, Abdulrazeg A, Shuaieb W. Implementation of Artificial Neural Networks on Field-Programmable Gate 

Arrays. Alq J Med App Sci. 2024;7(4):927-933. https://doi.org/10.54361/ajmas.247405  

 

INTRODUCTION 

Artificial intelligent is now a driving force behind various technologies used in websites, cameras, and smartphones. It 

is often implemented to identify objects in images and extract them for further processing. The general approach of 

machine learning involves taking a real dataset and applying algorithms such as deep learning [1], neural networks [2], 

the Perceptron algorithm [3], K-nearest neighbor [4], decision trees [5], among others. Among these, ANN has emerged 

as one of the most dominant techniques. ANNs excel in extracting and analyzing data, allowing them to effectively 

establish relationships between inputs and outputs. 

 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) have emerged as a pivotal technology in the field of artificial intelligence (AI), 

driving advancements across numerous domains including computer vision, natural language processing, and 

autonomous systems. Inspired by the intricate networks of neurons in the human brain, ANNs are designed to simulate 

the way biological systems process information, offering a powerful framework for addressing complex computational 

tasks that traditional algorithms struggle to handle [6-8]. 

The resurgence of interest in ANNs over the past decade can be attributed to several key developments. First, the 

exponential growth in computational power, facilitated by the advent of Graphics Processing Units (GPUs) and 

distributed computing, has made it feasible to train large-scale neural networks. Second, the availability of massive 
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datasets, driven by the proliferation of digital data in various sectors, has provided the necessary fuel for training deep 

neural networks. Finally, innovations in learning algorithms, particularly the backpropagation algorithm and its variants, 

have significantly improved the training efficiency and generalization capabilities of ANNs [9]. 

 

Structure of an ANN 

A General Artificial Neural Network (ANN) is a computational model inspired by the structure and function of the 

human brain. It consists of interconnected layers of nodes (neurons), which work together to process information and 

make predictions or decisions. Figure 1 shows the general ANN model architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. General ANN Model architecture 

 

• Input Layer: This layer receives the input data. Each neuron in this layer represents a feature or attribute of the 

input data. 

• Hidden Layers: These layers process the inputs received from the input layer. An ANN can have one or multiple 

hidden layers, and the neurons in these layers apply various transformations to the data using activation 

functions. 

• Output Layer: This layer produces the final output. The number of neurons in the output layer depends on the 

classes of the application. 

 

Software implementation 

The application which will be addressed in this paper is digit recognition. The dataset is self-made binary digit dataset. 

The number of classes are 5 classes (1 : 5) which are represented as shown in Figure 2.   

 

 

 

 

 

 

 

 
Figure 2. Dataset description 

 

Every input image is (5 x 5) binary array, every bit will be an input of each neuron in the input layer, the image will be 

reshaped to be (25 x 1).  A fully connected 5 layers ANN will be implemented in this application as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933    929 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Flowchart of the software implementation of ANN 

 

The first layer is an input layer which consist of 25 inputs corresponding to the number of bits in the binary image. The 

second layer is the first hidden layer consist of 20 neurons with Rectified Linear Unit (ReLU) activation function. The 

corresponding equation in this layer is represented in Equation 1. 

 

𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟏[𝟐𝟎][𝟏] = 𝑹𝒆𝑳𝑼 (𝑾𝟏[𝟐𝟎][𝟐𝟓] ∗ 𝒃[𝟐𝟓][𝟏])               Equation 1 

 

The ReLU activation function is one of the most popular in neural networks. ReLU is defined as being zero for all inputs 

below a certain threshold (usually zero) and linear for inputs above that threshold. The function can be mathematically 

expressed in Equation 2[10]. 

 

𝑹𝒆𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙)               Equation 2 

 

The second and the third hidden layers consist of 20 neurons and follow the same mathematics as the first layer. Equation 

3 and Equation 4 represent the mathematical equations of layer 2 and layer 3 respectively. 

 

 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟐[𝟐𝟎][𝟏] = 𝑹𝒆𝑳𝑼 (𝑾𝟐[𝟐𝟎][𝟐𝟎] ∗ 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟏[𝟐𝟎][𝟏])         Equation 3 

 

𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟑[𝟐𝟎][𝟏] = 𝑹𝒆𝑳𝑼 (𝑾𝟑[𝟐𝟎][𝟐𝟎] ∗ 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟐[𝟐𝟎][𝟏])         Equation 4 

 

The final layer is the output layer consists of 5 neurons, The corresponding equation in this layer is represented in 

Equation 5. 

 

𝑶𝒖𝒕𝒑𝒖𝒕 𝑳.[𝟓][𝟏] = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 (𝑾𝟒[𝟓][𝟐𝟎] ∗ 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟑[𝟐𝟎][𝟏])          Equation 5 

 

Softmax is commonly used in the output layer of a classifier when dealing with more than two categories. The function 

can be mathematically expressed in Equation 6 [11]. 

𝑺𝒐𝒕𝒎𝒂𝒙 (𝒛)𝒊 =   𝒆𝒛𝒊

∑ 𝒆𝒛𝒋𝒌
𝒋=𝟏

⁄                     Equation 6 

Converting the following equation to MATLAB code, train the module to find the evaluation characteristics and then 

test the module to find the validation characteristics and finally apply profiling function to find the execution time in 

CPU. The results show that evaluation accuracy of the module reached 96% and validation accuracy of the module 

reached 92%. Figure 4 shows the execution time in MATLAB, and the results show that it took 0.003 s to find the output 

of a given image. 
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Figure 4. Execution time in MATLAB 

 

Field Programmable Gate Arrays  

Field Programmable Gate Arrays (FPGAs) represent a versatile and powerful technology in digital design and embedded 

systems. Since their introduction in the mid-1980s, FPGAs have become essential components across diverse 

applications, including telecommunications, automotive systems, high-performance computing, and artificial 

intelligence. Unlike Application-Specific Integrated Circuits (ASICs), which are tailored for a single function, FPGAs 

offer reconfigurability, enabling designers to modify hardware configurations even after manufacturing. This 

adaptability, combined with their parallel processing capabilities, makes FPGAs invaluable for creating custom 

hardware solutions tailored to specific needs. 

The growing complexity of digital systems, alongside increasing demands for higher performance and lower power 

consumption, has accelerated the adoption of FPGAs across various industries. Their reconfigurability allows for rapid 

prototyping, iterative design, and the implementation of complex algorithms directly in hardware, circumventing some 

limitations of traditional software approaches. Moreover, FPGAs are increasingly utilized in areas like deep learning 

acceleration, real-time data processing, and edge computing, where they deliver significant advantages over general-

purpose processors in terms of latency, throughput, and energy efficiency.[12-14]. 

 

FPGA implementation  

Hardware design of the module is implemented in Vivado Design Suite. it is a comprehensive software suite for the 

synthesis and analysis of hardware description language (HDL) designs. It supersedes Xilinx ISE, offering enhanced 

features for system-on-chip (SoC) development and high-level synthesis. Unlike its predecessor, Vivado represents a 

complete ground-up rewrite and rethinking of the entire design flow, providing a more efficient and integrated 

environment for modern hardware design. The programming language used in Vivado is Verilog HLS. The hardware 

design will be able to accept a 25 bits binary image and predict the correct digit, which means that the testing algorithm 

will be converted to hardware design. After train the module in MATLAB, the learned weights will be exported to 

Vivado. The design will be implemented with behavioral modeling   style. The flowchart is shown in Figure 5.  
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Figure 5. Flowchart of Hardware Implementation 

 

The design operates at a clock frequency of 100 MHz, which corresponds to a 20 ns clock cycle. Behavioral modeling, 

the highest level of abstraction in Verilog, has been employed for this project. This approach enables the implementation 

of the module based on the desired design algorithm without focusing on specific hardware details like the number of 

adders, multipliers, or dividers needed. The Vivado software tool was used to create an Algorithmic State Machine 

(ASM) chart for the entire design. The module has been successfully synthesized in Vivado and is now ready for testing 

with a 5x5 binary image. MATLAB was used to test the module, and the output predictions, shown in Figure 6, indicate 

that the module correctly identifies the digit "1" in the image 

 

 

 

 

 

 

 
Figure 6. Results of a given image 

 

By taking the same image and implement it in Vivado design suite to test the module and confirm the accuracy of the 

hardware design, the result is shown in Figure 7.  
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Figure 7. Results of the hardware implementation 

 

The results indicate that the outputs from MATLAB Figure 6 and the Vivado Design Suite Figure 7 are identical, 

confirming that the hardware implementation has been correctly designed and synthesized. Additionally, when testing 

the module with five different binary images, the outputs in both MATLAB and Vivado were consistent, further 

validating the design's accuracy. 

The second aspect of the evaluation focused on execution time. The timing simulation in the Vivado Design Suite 

revealed that the output delay is 200 ns, corresponding to 10 clock cycles. This demonstrates a significant improvement 

in timing performance. Table 1 compares the timing simulation between the CPU and FPGA, showing that the FPGA 

simulation is 4680 times faster than the CPU simulation. 

 
Table 1. comparison between CPU and FPGA timing simulation 

Timing 
CPU FPGA 

0.003 s (150000 clock cycles) 200 ns (10 clock cycles) 

 

CONCLUSION 

One of the most challenging aspects of this paper is exporting inputs from the MATLAB implementation due to the 

complexity of the code. Additionally, working with fixed-point numbers is generally easier and more efficient than using 

floating-point numbers. Implementing floating-point arithmetic in hardware requires IP cores, which can consume many 

clock cycles. However, using fixed-point numbers does not significantly impact the results, as the introduced error is 

negligible. The FPGA module was designed using behavioral modeling, a style that abstracts away specific hardware 

details like the number of adders, multipliers, and registers. The software tool automatically determines these resources, 

which is a key advantage of this modeling approach. However, a significant drawback is that behavioral designs can be 

challenging for the software tool to synthesize and translate into a hardware design. If the module is highly complex, 

behavioral modeling may not be the most suitable choice. Finally, in real-time applications, execution time is critical. 

For certain algorithms, implementing the most critical parts in an FPGA can minimize output delay without 

compromising the accuracy of the results. 
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 المستخلص

حلا  واعد ا لتحبيق عملياا   على ميببفوفاا البواباا البابلة للبرم ة ميداني ا يوفر تطبيق الشبببكاا العيبببية ااعببطناعية

الشبكاا   طبيقمنه ية ت  يتحبق هذا البحث منوكفاءة في استخدام الطاقة في المهام المعبدة.   و زمن أقلحسابية عالية الأداء 

ألية ، مع التركيز على ال وانب الحرجة مثل اختيار  ميبفوفاا البواباا البابلة للبرم ة ميداني اعلى  العيببية ااعبطناعية  

  برم ةوتبنياا التحسبين. من خلا  ااسبتفادة من قدراا المعال ة المتوازية واعادة   الدائرة الإلكترونية  وتيبميم    ميمالتيب

، يتم تسببريع عملياا حسبباب الشبببكة العيبببية بشببكل كبير، مما ي علها مثالية  ميببفوفاا البواباا البابلة للبرم ة ميداني ا

عملية التنفيذ تشبببمل بعل المفاهيم  مثل معال ة اليبببور والأن مة المضبببمنة.    التي تتطلب ااسبببت ابة اللح يةللتطبيباا  

، وادارة الذاكرة، وتحسببين تدفق البياناا، مع اسببتخدام تبنياا متبدمة مثل ااعداد الكسببريةحسبباب ، بما في ذلك  ااسبباسببية

خوارزمية  أداء   سرعة  يبارن البحث بين دقة و.  تبليل الوحداا االكترونية المستخدمةو  تنفيذ اكثر من عملية  في وقت واحد 

، ميبفوفاا البواباا البابلة للبرم ة ميداني ا   الشببكاا العيببية ااعبطناعية على وحداا المعال ة المركزية مبابل وحداا 

تطبيق  مرة من   4680أسببببرق بمبدار  ميببببفوفاا البواباا الببابلبة للبرم بة ميبداني ا   علىتطبيق الخوارزميبة  أن   حيبث وجد 

  .مع المحاف ة على دقة المخرجاا ،  MATLAB على وحدة المعال ة المركزية باستخدام الخوارزمية

التيبميم  ،  Verilog، الذكاء ااعبطناعي،  ميبفوفاا البواباا البابلة للبرم ة ميداني ا  . الشببكة العيببية،  الكلمات المفتاحية

 .االكتروني

 

https://journal.utripoli.edu.ly/index.php/Alqalam/index

