

Original article

Applying Different Analytical Methods (GC-Mass, Spectrophotometer, Atomic Absorption, and Flame Photometry for Estimation some Chemical Constituents in leaves and Stems of the *Quercus coccifera* plant

Aisha Ali¹ , Adel Abdulathim² , Zuhir Akrim³ , Nevein Abdel-Hady⁴ , Hamad Hasan^{*5}

¹Botany Department, Faculty of Science, Omar Al-Muhtar University, Libya

²Medical Technology Department, Higher Institute of Science and Technology, Cyrene, Libya

³Pharmacology and Toxicology Department, Faculty of Pharmacy, Omar Al-Muhtar University, Libya

⁴Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Egypt

⁵Chemistry Department, Faculty of Science, Omar Al-Muhtar University, Libya

Corresponding Email. hamad.dr@omu.edu.ly

Abstract

Some of the different analytical methods were used to estimate some of the chemical constituents in leaves and fruits of the *Quercus coccifera* plant, where the GC-MS was used for the determination of Fatty acids and phenolic acids. The atomic absorption spectrometry (AAS) was used for measuring the contents of metals such as Zn, Cr, and Cu. Also, the Flame photometer was used for the determination of minerals Na, K, and Ca. On the side the spectrophotometer was applied to measure the contents of phosphorus and Nitrogen. The results of this study recorded that, some of phenolic acids were found in the samples including: The concentration of phenolic acids in leaves and fruits of the studied plant as following: Chlorogenic acid (0.0115 mg/g), 3,4-Dicaffeoylquinic acid (0.129 mg/g), 3,5- Dicaffeoylquinic acid (0.309 mg/g), 4,5- Dicaffeoylquinic acid (0.0161 mg/g), 2,5-dihydroxy Benzoic acid (0.00000589 mg/g), and Galic acid (0.166mg/g). *Quercus coccifera* fruits: Chlorogenic acid (0.0197 mg/g), 3,4-Dicaffeoylquinic acid (0.102 mg/g), 3,5-Dicaffeoylquinic acid (0.132 mg/g), 4,5-Dicaffeoylquinic acid (0.205 mg/g), and cinnamic acid (0.0000698mg/g). Small amounts of Fatty acids were recorded and included Saturated fatty (0.081 and 0.087mg/g) and unsaturated fatty acids containing Monounsaturated fatty acids (0.047 and 0.048 mg/g) in leaves and stems, respectively, and Polyunsaturated fatty acids (0.033 and 0.049mg/g), respectively. On the other side, the contents of Sodium, potassium, Calcium, Magnesium, Nitrogen, and Phosphorus in leaves were as follows: 0.3, 11.5, 1.50, 1.82, 0.69, and 2.27 ppm, whereas the contents of the same elements in fruits were as follows: 0.08, 13.5, 0.50, 1.597, 0.52, and 2.142 ppm, respectively. This study recorded small amounts of Zinc, Copper, and Chromium, and ranged between (0.147 - 0.154), (0.947 - 1.132) and (0.0861 - 0.0898 ppm), respectively.

Keywords. Analytical Methods, Chemical, Constituents, *Quercus Coccifera* Plant.

Introduction

Medicinal and aromatic plants are an important source of drugs in Libya. The country has a vast area and a variety of geographic conditions suitable for the cultivation of aromatic and medicinal plants. There is scope for the establishment of small-scale phytochemical industries. There is a lack of R&D activities in the field of medicinal plants. As a result of over-exploitation, some plants have become rare and endangered. There is also an imminent threat of genetic erosion of medicinal plant species because of an increase in heavy grazing, human use, and drought hazards. The economic constraints of the country mean that international assistance is needed for the collection and conservation of the genetic resources of endangered species of medicinal value [1]. Natural products, especially medicinal plants, produce and contain a variety of secondary metabolites that can perform various functions, and many of them exhibit interesting and useful biological activities. It's well established that natural products have been a source of lead compounds for the development of some of the most effective drugs available for the treatment of different human diseases [2]. Investigations have revealed that daily consumption of antioxidants can reduce the incidence of various ailments [3,4]. Many studies were carried out on different plants to evaluate the chemical constituents in different tissues, such as leaves, stems, and fruits [5-34]. This study aims to estimate the contents of Fatty acids, phenolic acids, minerals, metals, and elements in fruits and leaf samples of the *Quercus coccifera* plant.

Methods

Sampling

Selection of medicinal plants for this study

The selected plant of the *Quercus coccifera* in this study was collected from Al-Gabel Al -Kadar Region. The Samples including leaves and Stems.

Samples preparation

Leaves and fruits were separated and washed with distilled water several times, then dried in the open air for fifteen days. Then samples were ground and stored until the analysis (Figures 1& 2).

Figure 1. *Quercus coccifera* leaves**Figure 2. *Quercus coccifera* fruits**

Taxonomical investigation

The samples were kindly identified by the Plant Taxonomy of the Botany Department. The samples were kept in the Selipium herbarium, Faculty of Science, Omar Al Mukhtar University. (Figure 3), show the plant taxonomy,

Figure 3. Herbarium sample of *Quercus coccifera*.

Chemical studies

Total phenolic content (TPC)

Total phenolic was estimated using the colorimetric method based on Folin-Ciocalteu reagent "100,200,300,400 and 500 μ l" of methanol extract of leaves and fruits of the selection plant were diluted with 2ml of distilled water and mixed with "600 μ l" of Folin-Ciocalteu reagent. The mixture was allowed to stand for 5 min. and then 2ml of 20% Na_2CO_3 was added and kept at a boiling water bath for 1 minute. After cooling, the blue colour formed was measured at 765 nm by a UV-visible spectrophotometer. Quantification was done with respect to stander calibration curve of Pyrogallol, the results were expressed as pyrogallol " μ g/ml".

Fatty acids (Gas Liquid Chromatographic Analysis)

5 grams of powdered extract for 30 minutes with 20ml mixture of chloroform and methanol (2:1) and filtered. The marc (remained powdered) was re-extracted three times as mentioned (chloroform/ methanol). Combine the extracts and wash with distilled water. The extracted layer was concentrated to a residue. The analysis of fatty acid was carried out by shinadzu-8A GLC, in the Faculty of Science, Alexandria University, Egypt.

Determination of minerals

0.5 gram of each sample was digested by Nitric acid. The samples were put in 250 ml conical flask containing 25 l distilled water and 5 ml Nitric acid on a hot plate. The samples were heated until near dryness. The samples were then removed and left until cooled, then filtered. To the filtrate, the distilled water was added to complete the valium at 100 ml in a measuring flask. The mineral content of the samples, Na, K, and Ca were measured by Flam photometer, while the metals of Mg, Cu, Zn, and Cr were determined by atomic absorption, whereas the P and N were estimated by a Spectrophotometer according to the method described by previous studies. After digestion with HNO_3 acid, were determined using the Atomic Absorption Spectrophotometer. These methods were used for estimating minerals and metals in solid and liquid samples [35-40].

Results

Total phenolic acids content

The concentration of phenolic acids in leaves and fruits *Quercus coccifera* as follows: *Quercus coccifera* leaves: Chlorogenic acid (0.0115 mg/g), 3,4- Dicaffeoylquinic acid (0.129 mg/g), 3,5-Dicaffeoyl guinic acid (0.309 mg/g), 4,5- Dicaffeoylquinic acid (0.0161 mg/g), 2,5-dihydroxy Benzoic acid (0.00000589 mg/g), and Galic acid (0.166mg/g). *Quercus coccifera* fruits: Chlorogenic acid (0.0197 mg/g), 3,4-Dicaffeoylquinic acid (0.102 mg/g), 3,5-Dicaffeoylquinic acid (0.132 mg/g), 4,5-Dicaffeoylquinic acid (0.205 mg/g), and cinnamic acid (0.00000698mg/g). Phenolic acid content in the studied plant is given in (Table 2). The concentration of

Table 2. Phenolic acids contents $\mu\text{g/g}$ in *Quercus coccifera* plant

Plants Phenolic acids $\mu\text{g/g}$		
	leaves	fruits
Chlorogenic acid	0.0115	0.0197
Caffeic acid	—	—
3,4-Dicaffeoyl guinic acid	0.129	0.102
3,5-Dicaffeoyl guinic acid	0.309	0.132
4,5-Dicaffeoyl guinic acid	0.0161	0.205
2,5-dihydroxy Benzoic acid	0.00000589	—
Cinnamic acid	—	0.00000698
Gallic acid	0.166	—

Fatty acids

Total Saturated and Unsaturated fatty acid

The concentration of Saturated fatty acids in *Q. coccifera* leaves and fruits is as follows: (0.081 and 0.087mg/g). concentration of unsaturated fatty acid in *Q. coccifera* leaves, and fruits as follows: Monounsaturated fatty acid (0.047and 0.048 mg/g) respectively. Polyunsaturated fatty acid (0.033 and 0.049mg/g) respectively, (Table 3).

Table 3. Total Saturated (T SFA) and unsaturated (Un SFA) fatty acids

Plant T SFA and T UnSFA $\mu\text{g/g}$	Quercus coccifera	
	leaves	fruits
SFA	0.081	0.087
	MUFA	0.047
Un SFA	PUFA	0.033
		0.049

Saturated fatty acids

The concentration of saturated fatty acids in leaves and fruits of *Quercus coccifera* is as follows: Hexadecanoic (0.037, 0.023mg/g) and Octadecanoic (0.044, 0.064mg/g) respectively, (Table 4).

Table 4. Saturated fatty acid content in the studied plant (leaves and fruits).

Plants Fatty acids $\mu\text{g/g}$	Quercus coccifera	
	leaves	fruits
Hexadecanoic	0.037	0.023
Octadecanoic	0.044	0.064

Unsaturated fatty acids

The concentration of unsaturated fatty acids in leaves and fruits of *Quercus coccifera* is as follows: *Quercus coccifera* leaves: Oleic (0.047mg/g) and γ -linoleic (0.033mg/g). *Quercus coccifera* fruits: Oleic (0.048 mg/g) and γ -linoleic (0.049mg/g), (Table 5).

Table 5. Unsaturated fatty acid content in the studied plant (leafs and fruits).

Plants		Quercus coccifera	
Fatty acids μg/g		Leaves	Fruits
Mono-unsaturated fatty acid	Oleic	0.047	0.048
γ	γ-linoleic	0.033	0.049

Mineral element contents of the Leaves and fruits of the studied Plants

The mineral element constituents of the studied plant are shown in (Table 6). The concentration of macro elements. The high contents of potassium were recorded in fruits and leaves of values 13.5 and 11.5 ppm, respectively. Small amounts of sodium were recorded in leaves and fruits (0.33 and 0.08 ppm), respectively. The contents of calcium, phosphorus, Nitrogen in leaves were as following 1.50 ,2.271, and 0.69 ppm, respectively, whereas the contents of the same elements in fruits were 0.50 ,2.142 and 0.52 ppm, respectively. The contents of Zn, Cu, Cr, and Mg in the leaves were as follows: 0.154, 0.947, 0.0898, and 1.824 ppm, respectively, while their contents in fruits were 0.147,1.132 0.0861, and 1.597 ppm, respectively (Table 6).

Table 6. Mineral contents of Leaves and fruits of studied plants (ppm)

Plant			
Elements ppm		Leaves	Fruits
Macro elements	Na	0.33	0.08
	Ca	1.50	0.50
	K	11.5	13.5
	P	2.271	2.142
	N	0.69	0.52
Microelements	Zn	0.154	0.147
	Cu	0.947	1.132
	Cr	0.0898	0.0861
	Mg	1.824	1.597

Discussion

A lot of researches now taking place everywhere in the world to evaluate the safety, therapeutic use, and the composition of the traditional medicine. The Mediterranean climate in Libya favors the growth of a great number of plant species, some of which have various medicinal and antioxidant properties. There are more than a hundred species used by local people in Libyan folk medicine for medicinal purposes. Recently, free radicals have attracted a great deal of attention from researchers. The free radicals are mainly derived from oxygen and nitrogen, and are produced in our body systems, exposure to physicochemical conditions, or could be related to some diseases. Free radicals can cause adverse effects on lipids, proteins, and oligonucleotides, including DNAs and RNAs, and are also involved in aging and many human diseases [41]. The use of plant extracts and phytochemicals with antioxidant activity can be of great significance in the treatment of many diseases [42].

One of the most important roles played by natural products as therapeutic agents is through their antioxidant activity. Plants can produce a large number of antioxidants to manage the oxidative stress resulting from the sunbeams and oxygen, which makes the plants good sources for the new compounds with antioxidant activity. Antioxidants can be of immense therapeutic importance in the treatment of free radical-linked pathogenesis like cancer, cardiovascular disease, atherosclerosis, and ageing [43]. Estimating the contents of fatty acids and phenolic acids by modern methods as GC-Mass is very important, because these methods can detect very low concentrations of the samples, also to atomic absorption instrument can estimate low levels of heavy metals in many studies on different samples [44 -105].

Conclusion

According to the results recorded in this study, there are different amounts and types of Fatty acids and phenolic acids, beside the presence of important amounts of elements such as potassium, sodium, calcium, phosphorus, and Nitrogen.

Acknowledgment

The authors highly appreciated the collaboration of the staff members of the Botany department, Faculty of Science, Omar Al-Muhtar University, during the experimental part of this study.

Conflict

No conflict between the results recorded in this study and other studies.

References

1. Kobasi H. Dictionary of Herbs and Medicinal Plants. Beirut, Lebanon: Scientific Books House; 1993. p. 566.
2. Lee HC, Cheng SS, Chang ST. Antifungal property of the essential oils and their constituents from *Cinnamomum osmophloeum* leaf against tree pathogenic fungi. *J Sci Food Agric.* 2005;85(12):2047-2053. doi:10.1002/jsfa.2208
3. Newman G, Cragg K, Snade H. Antibacterial activity of some medicinal plants. In: Proceedings of the 11th NAPRECA Symposium; 1991 Aug; Antananarivo, Madagascar. 1991. p. 56-96.
4. Malika NF, Mohamad G, Chakib EA. Antimicrobial activity of natural honey from aromatic and medicinal plants on antibioresistant strains of bacteria. *Int J Agric Biol.* 2004;6(2):289-293.
5. Aljamal MA, Hasan HM, Al Sonosy HA. Antibacterial activity investigation and anti-biotic sensitive's for different solvents (Ethanol, propanol, DMSO and di Ethel ether) extracts of seeds, leafs and stems of (*Laurus azorica* and *Avena sterilis*) plants. *Int J Curr Microbiol Appl Sci.* 2024;13(11):175-190. doi:10.20546/ijcmas.2024.1311.020
6. Hamade MH, Abdelraziq SA, Gebreel AA. Extraction and Determination the of Beta carotene content in carrots and tomato samples Collected from some markets at ElBeida City, Libya. *EPH - Int J Appl Sci.* 2019;1(1):105-110.
7. Hasan HM, Ibrahim H, Gonaid MA, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15-23.
8. Hasan H, Jadallah S, Zuhir A, Ali F, Saber M. The Anti-Cancer, Anti-Inflammatory, Antibacterial, Antifungal, Anti-Oxidant and Phytochemical Investigation of Flowers and Stems of *Anacyclus Clavatus* Plant Extracts. *AlQalam J Med Appl Sci.* 2025;8(4):415-427.
9. Hasan H, Zuhir A, Shuib F, Abdraba D. Phytochemical Investigation and Exploring the *Citrullus Colocynthis* Extracts as Antibacterial Agents Against Some Gram and Negative Bacteria Species. *AlQalam J Med Appl Sci.* 2025;8(4):392-400.
10. MdZeyauallah RA, Naseem A, Badrul I, Hamad MI, Azza SA, Faheem AB, et al. Catechol biodegradation by *Pseudomonas* strain: a critical analysis. *Int J Chem Sci.* 2009;7(3):2211-2221.
11. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acids contents of leafs and stems for two types of herbal plants (Marjoram and Hybrid tea rose) at AL-Gabal AL-Akhder region. *Der Pharma Chem.* 2014;6(6):442-447.
12. Gonaid MH, Hamad HH, Ibrahim HH, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15-23.
13. El-Mehdawy MF, Eman KS, Hamad MIH. Amino Acid Contents of Leafs and Stems for Three Types of Herbal Plants at Al-Gabal Al-Akhder Region. *World J Chem.* 2014;9(1):15-19.
14. Hamad MH, Noura AAM, Salem AM. Phytochemical screening , total phenolic, anti-oxidant, metal and mineral contents in some parts of *plantago Albicans* grown in Libya. *World J Pharm Res.* 2024;13(3):1-17.
15. Anees AS, Hamad MIHH, Mojahidul I. Antifungal potential of 1,2,4-triazole derivatives and therapeutic efficacy of *Tinea corporis* in albino rats. *Der Pharm Lett.* 2011;3(1):228-236.
16. Hamad H, Marwa M, Amal H. Determining the contents of antioxidants, total phenols, carbohydrate, total protein, and some elements in *Eucalyptus gomphocephala* and *Ricinus communis* plant samples. *Libyan Med J.* 2015;10(2):222-231.
17. Hamad H, Zuhir A, Farag S, Dala A. Efficiency of *Cynara Cornigera* Fruits on Antibacterial, Antifungal and Its Phytochemical, Anti-Oxidant Screening. *Libyan Med J.* 2025;17(2):120-128.
18. Hanan MA, Hamida E, Hamad MAH. Nitrogen, Phosphorus and Minerals (Sodium, Potassium and Calcium) Contents of Some Algae's Species (*Anabaena* and *Spirulina platensis*). *Int J Curr Microbiol Appl Sci.* 2016;5(11):836-841.
19. Hasan H, Mariea FFE, Eman KS. The Contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. *EPH-Int J Appl Sci.* 2014;6(3):1-6.
20. El-Mehdawe MF, Eman KS, Hamad MIH. Heavy Metals and Mineral Elements contents of Leafs and Stems for some Herbal Plants at AL-Gabal AL-Akhder Region. *Chem Sci Rev Lett.* 2014;3(12):980-986.
21. Hamad H, Ashour S, Ahmed A. Estimation of Amino Acid Composition, Total Carbohydrate, and Total Protein Content in *Ballota pseudodictamnus* Plant Extracts from Al Jabal Al Akhdar Region, Libya. *Libyan Med J.* 2025;17(3):266-271.
22. Hamad H, Ahmed H, Wafa A. Evaluation of Anti-Oxidant Capacity, Total Phenol, Metal, and Mineral Contents of *Ziziphus lotus* Plant Grown at Some Regions of AlGabal AlKhder, Libya. *Libyan Med J.* 2025;17(2):137-143.
23. Hesien RA, Amira AKA, Ahlaam MA, Hamad MAH. Determination the Anti -Oxidant Capacity, Total Phenols, Minerals and Evaluation the Anti- Bacteria Activity of Leafs and Stems of Gaper Plant Extracts. *Scholars J Appl Med Sci.* 2024;12(4):451-457.
24. Hamad MAH, Noura AAM, Salem AM. Total Carbohydrate, Total Protein, Minerals and Amino Acid contents in Fruits, Pulps and Seeds of Some Cultivars of Muskmelon and Watermelon Fruit Samples Collected from Al. *J Der Pharma Chem.* 2024;16(3):330-334.
25. Ben Arous NAA, Naser ME, Hamad MAH. Phytochemical Screening, Anti-bacterial and Anti-fungi Activities of Leafs, Stems and Roots of *C. parviflorus* Lam and *C. salviifolius* L Plants. *Int J Curr Microbiol Appl Sci.* 2024;13(11):262-280.

26. Anas FAE, Hamad MAH, Salim AM, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of *Helichrysum stoechas* grown in Libya. *Afr J Biol Sci.* 2024;3(6):1-10.

27. Naseer RE, Najat MAB, Salma AA, Hamad MAH. Evaluation of Metal and Mineral Contents of Leafs, Stems and Roots of *C. Parviflorus* Lam and *C. Salvifolius* L Plants Growing at Al Ghabal Al-Khder (Libya). *Int J Adv Multidisc Res Stud.* 2024;4(5):191-194.

28. Hamad MAH, Salem AM. Total Carbohydrate, Total Protein, Minerals and Amino Acid Contents in Fruits, Pulps and Seeds of Some Cultivars of Muskmelon and Watermelon Fruit Samples Collected from Algalbal Alkhder region. *Scholars J Appl Med Sci.* 2024;12(1):1-7.

29. Haroon A, Hamad MAH, Wafa AAS, Baset ESM. A Comparative study of morphological , physiological and chemical properties of leafs and steam samples of (*E.gomphocephala*) (Tuart)plant growing at coastal (Derna city) and *J Res Environ Earth Sci.* 2024;9(12):10-18.

30. Enam FM, Wesam FAM, Hamad MAH. Detection the Contents of Minerals of (Sodium, Potassium and Calcium) and Some Metals of (Iron, Nickel and Copper) in some vegetable and soil samples collected from Al-Marj . *Int J Adv Multidisc Res Stud.* 2023;5(3):304-309.

31. Rinya FMA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical Screening of Some Herbal Plants (Menthe, Origanum and Salvia) Growing at Al-Gabal Al-akhder Region-Libya. *Afr J Basic Appl Sci.* 2017;9(3):161-164.

32. Ali RFA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *Int J Pharm Life Sci.* 2017;8(4):5500-5503.

33. Alaila A, Bouhuish R, Ali R, Naji H, Hasan H, Akrim Z. Evaluation of mineral (Na,Ca) and Metal (Fe,Cu,Ni) content, Alongside phytochemical screening of *Eriobotrya japonica* L. Grown in Two Different Locations in Libya. *AlQalam J Med Appl Sci.* 2025;8(3):1967-1976.

34. Al-Awjali K, Abdulsalam S, El-Mokasabi F, Akrim Z, Hasan H. Estimate the Antioxidant Capacity, Total Phenol contents Mineral Concentrations, Total Carbohydrate of *Capparis Spinosa* L.(Kabbar), *Ceratonia Siliqua* L (Kharuw) and *Juniperus Phoenicea* L (Arar) plants . *Attahadi Med J.* 2025;2(4):376-384.

35. Hamad MIH. The heavy metals distribution at Coastal water of Derna city (Libya). *Egypt J Aquat Res.* 2008;34(4):35-52.

36. Hamad MIH, Mojahid ul Islam. The concentrations of some heavy metals of Al-Gabal Al-Akhdar Coast Sediment. *Arch Appl Sci Res.* 2010;2(6):59-67.

37. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. *J EPH-Int J Appl Sci.* 2016;2(2):24-27.

38. Hamad MAH, Hussien SSM, Basit EEM. Accumulation of Some Heavy Metals in Green Algae as Bio Indicators of Environmental Pollution at Al-Haniea region: Libya Coastline. *Int J Adv Multidisc Res Stud.* 2024;4(5):188-190.

39. Hamad MIH, Ahmed MA. Major cations levels studies in surface coastal waters of Derna city, Libya. *Egypt J Aquat Res.* 2009;35(1):13-20.

40. Al-Nayyan N, Mohammed B, Hamad H. Estimate of the concentrations of heavy metals in soil and some plant samples collected from (near and far away) of the main road between Al-Bayda city and Wadi Al-Kouf region. *AlQalam J Med Appl Sci.* 2025;8(4):816-826.

41. Nostro N, Germano M, Angelo VN, Cannatelli M. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. *Lett Appl Microbiol.* 2000;30(5):379-384.

42. Rout PS, Choudhary AK, Kar MD, Das L, Jain A. Plants in traditional medicinal system - future source of new drugs. *Int J Pharm Pharm Sci.* 2009;1(1):1-23.

43. Badi AH. Commercialization of Medicinal and Aromatic Plants and Its Effect on the Depletion of Some Species of these Plants in Gebel Akhder [master's thesis]. Bengazi: the Academy of Post-Graduate Studies; 2006.

44. Hamad MAH, Hanan AAK, Fatima A. Infrared (IR) Characterization and Physicochemical Properties of Schiff Base Compound Obtained by the Reaction Between 4-Hydroxy-3-methoxy Benzaldehyde and 2-Amino-3 . *J Res Pharm Sci.* 2021;7(3):8-12.

45. Hamad MIH, Aaza IY, Safaa SH, Mabrouk MS. Biological study of transition metal complexes with adenine ligand. *Proc.* 2019;41(1):77.

46. Ahmed O, Ahmed NH, Hamad MAH, Fatin ME. Chemical and Biological Study of Some Transition Metal Complexes with Guanine as Ligand . *Int J New Chem.* 2023;10(3):172-183.

47. Hamad MAH, Enas UE, Hanan AK, Hana FS, Somaia MAE. Synthesis , Characterization and antibacterial applications of compounds produced by reaction between Barbital with Threonine, glycine, lycine, and alanine. *Afr J Biol Sci.* 2024;6(4):1-12.

48. Ashraf AA, Hamad MAH, Hanan AAK, Hana FS, Somaia MAE, Taffaha AA, et al. Molecular Docking studies of Some Schiff Base Compounds. *Afr J Biol Sci.* 2024;6(3):3324-3334.

49. Mohamed GB, Zainab SH, Hamad MAH, Hanan AKA, Mounera AAE, Mohammed MY, et al. I.R analysis and some biological applications for some Schiff base compounds prepared between (4- di methyl amino benzaldehyde) and some amino acids (Trptophan, Phenylalanine). *Eur Chem Bull.* 2024;12(5):887-906.

50. Mabrouk MS, Moussa SF, Hamad MIH. Synthesis, Characterization, and Antibacterial Studies of Metal Complexes with Tyrosine Ligand. *Int J New Chem.* 2023;10(5):323-339.

51. Hamad H. Biological Study of Some First Series Transition Metal Complexes with Adenine Ligand. In: The 23rd International Electronic Conference on Synthetic Organic Chemistry session Bioorganic, Medicinal and Natural Products; 2019 Nov 1-30. Basel, Switzerland: MDPI; 2019. doi:10.3390/ecsoc-23-06601

52. Siddiqui AA, Mojahid I, Hasan HH. Synthesis and antituberculostic activity of some novel 1, 3, 4-oxadiazole. *Hamdard Medicus.* 2011;54(1):82-89.

53. Eltawaty SA, Abdalkader GA, Hasan HM, Houssein MA. Antibacterial activity and GC-MS analysis of chloroform extract of bark of the Libyan *Salvia fruticosa* Mill. *Int J Multidisc Sci Adv Technol.* 2021;1(1):715-721.

54. Naili MB. Evaluation of antibacterial and antioxidant activities of *Artemisia campestris* (Asteraceae) and *Ziziphus lotus* (Rhamnaceae). *Arab J Chem.* 2010;3(2):79-84. doi:10.1016/j.arabjc.2010.01.012

55. Elsalhin H, Abobaker HA, Hasan H, El-Dayek GA. Antioxidant capacity and Total phenolic compounds of some algae species (Anabaena and Spirulina platensis). *Sch Acad J Biosci*. 2016;4(10):782-786.

56. Alaila AK, El Salhin HE, Ali RF, Hasan HM. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *Int J Pharm Life Sci*. 2017;8(4):5500-5503.

57. Hasan H, Mariea FFE, Eman KS. The Contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. *EPH-Int J Appl Sci*. 2014;6(3):1-6.

58. Abdelrazeg A, Khalifa A, Mohammed H, Miftah H, Hamad H. Using melon and watermelon peels for the removal of some heavy metals from aqueous solutions. *AlQalam J Med Appl Sci*. 2025;8(4):787-796.

59. Abdul Razaq A, Hamad H. Estimate the contents and types of water well salts by the Palmer Roger model affecting the corrosion of Al-Bayda city (Libya) network pipes. *AlQalam J Med Appl Sci*. 2025;8(4):744-753.

60. Abdulsayid FA, Hamad MAH, Huda AE. IR spectroscopic investigation, X-ray fluorescence scanning, and flame photometer analysis for sediments and rock samples of Al-Gabal Al-Akhder coast region (Libya). *IOSR J Appl Chem*. 2021;14(4):20-30.

61. ALambarki M, Hasan HMA. Assessment of the heavy metal contents in air samples collected from the area extended between AlBayda and Alquba cities (Libya). *AlQalam J Med Appl Sci*. 2025;8(4):695-707.

62. Hasan HMI. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria [PhD dissertation]. Alexandria: Alexandria University; 2006.

63. Hamad MAH, Hager AA, Mohammed EY. Chemical Studies of Water Samples Collected from Area Extended between Ras Al-Halal and El Haniea, Libya. *Asian J Appl Chem Res*. 2022;12(3):33-46.

64. Hamad MH. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria. *Egypt J Aquat Res*. 2006;32(2):300-315.

65. Hamad M, Mohammed AA, Hamad MAH. Adsorption and kinetic study for removal some heavy metals by use in activated carbon of sea grasses. *Int J Adv Multidiscip Res Stud*. 2024;4(6):677-685.

66. Hamad MAH, Hamad NI, Mohammed MYA, Hajir OAA, Al-Hendawi RA. Using Bottom Marine Sediments as Environmental Indicator State of (Tolmaitha – Toukra) Region at Eastern North Coast of Libya. *Sch J Eng Tech*. 2024;12(14):118-132.

67. Hamad MIH, Mojahid U I. The concentrations of some heavy metals of Al-Gabal Al-Akhder Coast Sediment. *Arch Appl Sci Res*. 2010;2(6):59-67.

68. Hamad MIH, Masoud MS. Thermal analysis (TGA), diffraction thermal analysis (DTA), infrared and X-rays analysis for sediment samples of Toubrouk city (Libya) coast. *Int J Chem Sci*. 2014;12(1):11-22.

69. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. *J Rad Nucl Appl*. 2024;9(1):47-51.

70. Hasan HAH. Estimate lead and cadmium contents of some archeological samples collected from ancient cities location (Cyrene and Abolonia) at Al-Gabal Al-Akhder Region, Libya. *Univ J Chem Appl*. 2021;12(21):902-907.

71. Alfutisi H, Hasan H. Removing of thymol blue from aqueous solutions by pomegranate peel. *Int J Appl Sci*. 2019;1(1):111-119.

72. Hasan JA, Hasan HMA. Potential human health risks assessment through determination of heavy metals contents in regularly consumed yogurt in Libya. *World J Pharm Pharm Sci*. 2024;13(12):100-112.

73. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Essam AM, Hamad MIH. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. *Arab J Chem*. 2016;9(Suppl 2):S1590-S1596. doi:10.1016/j.arabjc.2016.01.005

74. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad IH. Heavy metals accumulation in sediments of Alexandria coastal areas. *Bull Fac Sci, Alexandria Univ*. 2012;47(1-2):12-28.

75. Mamdouh SM, Wagdi ME, Ahmed MA, Hamad MIH. Chemical studies on Alexandria coast sediment. *Egypt Sci Mag*. 2005;2(4):93-102.

76. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad MIH. Distribution of Different Metals in Coastal Waters of Alexandria, Egypt. *Egypt Sci Mag*. 2010;7(1):1-19.

77. Mohamed AE, Afnan SA, Hamad MA, Mohammed AA, Mamdouh SM, Alaa RE, et al. Usage of natural wastes from animal and plant origins as adsorbents for the removal of some toxic industrial dyes and heavy metals in aqueous media. *J Water Process Eng*. 2023;55:104129. doi:10.1016/j.jwpe.2023.104129

78. Mohamed HB, Mohammed AZ, Ahmed MD, Hamad MAH, Doaa AE. Soil heavy metal pollution and the associated toxicity risk assessment in Ajdabiya and Zueitina, Libya. *Sci J Damietta Fac Sci*. 2024;14(1):16-27.

79. Nabil B, Hamad H, Ahmed E. Determination of Cu, Co and Pb in selected frozen fish tissues collected from Benghazi markets in Libya. *Chem Methodol*. 2018;2(3):56-63.

80. Wesam FAM, Hamad MAH. Detection of Heavy Metals and Radioactivity in Some Bones of Frozen Chicken Samples Collected from Libyan Markets. *Int J Adv Multidisc Res Stud*. 2023;3(3):761-764.

81. Wesam FAM, Hamad MAH. Study the accumulation of minerals and heavy metals in *Ulva* algae, *Cladophora*, *Polysiphonia* and *Laurencia* algae samples at eastern north region of Libya coast . *GSC Biol Pharm Sci*. 2023;23(3):147-152.

82. Citrine, Hamad H, Hajar Af. Contents of Metal Oxides in Marine Sediment and Rock Samples from the Eastern Libyan Coast, Utilizing the X-ray Method. *AlQalam J Med Appl Sci*. 2025;8(4):1316-1321.

83. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. *J Rad Nucl Appl*. 2024;9(1):47-51.

84. Hanan MA, Hamida E, Hamad MAH. Nitrogen, Phosphorus and Minerals (Sodium, Potassium and Calcium) Contents of Some Algae's Species (Anabaena and Spirulina platensis). *Int J Curr Microbiol Appl Sci*. 2016;5(11):836-841.

85. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. *J EPH-Int J Appl Sci*. 2016;2(2):24-27.

86. Mardhiyah F, Hamad H. Assessment of Soil Contamination by Heavy Metals in the Al-Fatayah Region, Derna, Libya. AlQalam J Med Appl Sci. 2025;8(4):1081-1091.
87. Hamad H. Biological Study of Some First Series Transition Metal Complexes with Adenine Ligand. In: The 23rd International Electronic Conference on Synthetic Organic Chemistry session Bioorganic, Medicinal and Natural Products; 2019 Nov 1-30. Basel, Switzerland: MDPI; 2019. doi:10.3390/ecsoc-23-06601
88. Hamad R, Ikraiam F, Hasan H. Determination of specific natural radionuclides in the bones of some local fish commonly consumed from the eastern Libyan coast. J Rad Nucl Appl. 2023;8(3):283-289.
89. Sroor AT, Walley El-Dine N, El-Bahi SM, Hasa HMA, Ali JM. Determination of radionuclides levels and absorbed dose for the, rock, plant and water in gondola- Libya. IOSR J Appl Phys. 2018;10(4):40-49.
90. Hasan H, Ammhmmid R, Khatab H, Ali J, Al kaseh A. Using gamma ray radiation to estimate the types and contents of radioactive nuclides in some ported sugar samples, Libya. AlQalam J Med Appl Sci. 2025;8(3):1795-1803.
91. Hasan S, Abduljalil O, Mohamed F, Hasan H. Detection of residual pesticides (Imidacloprid ,Aldicarb,Metalaxy, Cypermethrin ,Chlorpyrfos,DDA, and Endrin) in peach Samples collected from Jabal al Akhder farma,Libya. AlQalam J Med Appl Sci. 2025;8(4):2099-2106.
92. Mohamed FH, Salah MIH, Omuthum A, Hamad H. Sensitive and rabid method to estimate residual pesticides in some local and imported apple cultivars collected from eastern north side of Libya. Int J Adv Multidisc Res Stud. 2023;3(6):100-107.
93. Hamad IH, Nuesry MS. Poly cyclic hydrocarbons levels in some fishes tissues collected from Derna City (Libya) Coast. In: International conference on chemical, agricultural and medical sciences; 2014 Dec 4-5; Antalya, Turkey; 2014. p. 52-6.
94. Hamad MAH, Mounera AAE, Baseet ESM, Eman E, Al-Badri M. Identification and detection aromatic and aliphatic hydrocarbons in Epinephelus Marginatus fish samples collected from Benghazi coast. Int J Adv Multidisc Res Stud. 2023;6(3):107-113.
95. Mohammed A, Hamad MAH, Mounera AAE, Eman IHE. Extraction and identification of aliphatic hydrocarbons in marine sediment samples at Benghazi city and Dyriana town coasts (Libya). J Res Humanit Soc Sci. 2023;11(10):168-174.
96. Hasan MAH, Muftah HS, Abdelghani KA, Saad SI. Poly aromatic hydrocarbon concentrations in some shell samples at some Tobrouk city coast regions: could the oil industry be significantly affecting the environment. Ukr J Ecol. 2022;12(3):21-28.
97. Habel AMA, Mohamed NIH, Mohammed MA, Hamad MAH. Levels and sources of aliphatic and polycyclic aromatic hydrocarbons in blue runner fish from Benghazi coast, Libya. Afr J Biol Sci. 2024;6(3):1-10.
98. Hasan HMI, Mohamad ASA. A study of aliphatic hydrocarbons levels of some waters and sediments at Al-Gabal Al-Akhder coast regions. Int J Chem Sci. 2013;11(2):833-849.
99. Salem GM, Aljidaemi FF, Hwisa SA, Hamad MIH, Zaid AA, Amer IO. Occupational exposure to benzene and changes in hematological parameters in East Tripoli, Libya. Nanotechnol Percept. 2024;20(S5):358-364.
100. Habil Z, Ben arous N, Masoud N, Hasan H. Using GC-mass method for determination hydrocarbon compounds in some vegetable samples at Derna city, Libya. Libyan Med J. 2025;17(3):374-383.
101. Hasan H, Habil Z, Ben arous N. Estimate the types and contents of phenolic acid in C.Paviflorus lam and C.salviifolius L plants growing at Al-Gabal Al-hder regions. AlQalam J Med Appl Sci. 2025;8(3):1646-1656.
102. Zeyadah MA, Bahnasaway MH, Deedah AM, El-Emam DA, Hamad MAH. Evaluation of the contents of aliphatic and aromatic hydrocarbons in sediment from Zwwitina harbor coast (Libya), an indicator of petroleum pollution. Egypt J Aquat Biol Fish. 2023;27(6):989-1006.
103. Hasan H, Abdelgader I, Emrayed H, Abdel-Gany K. Removal of the medical dye safranin from aqueous solutions by sea grasses activated carbon: a kinetic study. AlQalam J Med Appl Sci. 2025;8(3):428-434.
104. Hasan HMA, Alhamdy MA. Adsorption and kinetic study for removal some heavy metals by using activated carbon of sea grasses. Int J Adv Multidiscip Res Stud. 2024;4(6):677-685.
105. Almadani EA, Hamad MAH, Kwakab FS. Kinetic study of the adsorption of the removal of bromo cresol purple from aqueous solutions. Int J Res Granthaalayah. 2019;7(12):1-10.