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Abstract

Infertility is a prevalent issue impacting millions of individuals of reproductive age globally. The
reduction in male fertility has been linked to various factors, including exposure to environmental
pollutants like pesticides. Cypermethrin, a type II synthetic pyrethroid insecticide commonly used in
Libya, is the focus of this study, which aims to evaluate its effects on the male reproductive system
in mice. The research involved three groups of adult male Swiss albino mice (Mus musculus), each
consisting of eight individuals. The control group received distilled water, while the treatment groups
were administered cypermethrin at doses of 65.7 mg/kg (CYP I) and 93.86 mg/kg (CYP II) of body
weight (bw). All treatments were delivered orally via gavage over a period of 28 days. At the end of
the experiment, measurements were taken for body and testicular weights, as well as serum levels
of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Additionally,
semen parameters, including sperm count, motility, and morphological abnormalities, were
assessed. Histopathological evaluations of testicular tissue were conducted using histological cross-
sections. Results indicated no significant differences in body weight between the treatment and
control groups. However, the higher dose (CYP II) led to a marked reduction in testicular weight,
sperm count, motility, and normal sperm morphology, alongside all histopathological criteria,
Johnsen's score, testosterone, and LH levels, while FSH levels increased. These findings suggest that
cypermethrin induces testicular toxicity and adversely affects male fertility in mice
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Introduction

Infertility is a major global issue, affecting over 15% of the world's population [1]. It describes the failure to
conceive following 12 months of regular, unprotected intercourse [2]. Male factor infertility accounts for 40%
of all infertility cases [3,4] and affects around 7-10% of the male population worldwide [5, 6]. Since 1992,
there has been a considerable reduction in male fertility [7-9], raising worries about the influence of modern
environmental variables on fertility [10], since it is thought to be one of the key causes of male infertility
[5,11,12]. Numerous studies have connected pesticide exposure to reproductive abnormalities and male
infertility [13-19]. Unfortunately, the increase in the production and consumption of pesticides in agriculture
in order to meet the high demands of the rising population has led to crossing the tolerance level, causing
severe environmental and health problems. These chemical toxicants affect male reproductive organs by
damaging steroidogenesis and deteriorating sperm quality. These negative effects depend on the type of
pesticide, the exposure dose, and the duration period [20].

In the meantime, the Swiss albino mouse (Mus musculus) serves as a valuable and widely accepted model
organism in toxicological research due to its physiological similarities to humans, well-characterized
reproductive biology, ease of handling, and genetic uniformity. Studies utilizing this model provide crucial
insights relevant to understanding potential human health risks [21]. Studies on occupational exposure as
well as animal experiments support the idea that environmental contaminants are contributing to fertility
issues [22,23]. Pesticides such as Amitraz [24], Chlorpyrifos [25], malathion [26], acetochlor [27], and
dimethoate [28] have shown adverse effects on mouse test models, proving the reproductive toxicity caused
by pesticides.

Synthetic pesticides known as pyrethroids have been developed as substitutes for their natural
counterparts, pyrethrins, due to their slower photodegradation. Pyrethroids target and disrupt the nervous
systems of insects, leading to hyperactivity, paralysis, and eventual death. However, they can also be
harmful to non-target species like crustaceans and fish [29]. Over the past decade, the use of pyrethroids
has increased while other types of insecticides, like organochlorines, organophosphates, and carbamates,
have decreased due to advantages such as their effectiveness against insects, rapid biodegradation, and low
toxicity to mammals [30]. Cypermethrin, a type II synthetic pyrethroid insecticide, is widely utilized in
commercial agriculture worldwide, including Libya [31]. Studies have demonstrated the adverse effects of
cypermethrin on the nervous system [32-34], the lungs [35], liver and kidneys [36-42], as well as
reproductive toxicity, molecular toxicity, endocrine disruption and decreased fertility in both sexes of
experimental animals[43-53], leading to reduced weight of various male reproductive organs, decrease in
serum testosterone levels, reduced sperm count, changes in sperm motility, abnormalities in sperm
morphology, testicular lesions, impairments of the seminiferous tubule structure, impairments of
spermatogenesis, and genotoxic effects [44,54-63]. These negative consequences could be linked to its
antiandrogenic effects [64]. herefore, this study aims to systematically investigate the consequences of
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commercial formulation of cypermethrin exposure on the male reproductive system of Swiss albino mice.
This study will specifically evaluate its effects on key endpoints, including testicular histoarchitecture, sperm
parameters (count, motility, morphology), reproductive hormone levels (testosterone, LH, FSH), and potential
apoptotic changes. Understanding these effects is critical for a comprehensive assessment of cypermethrin's
reproductive toxicity profile and its implications for environmental and occupational health.

Methods

Preparation of pesticide doses

The study utilized Cyper-kal 40% EC pesticide, which is widely used in agriculture in Libya. It contains
Cypermethrin [cyano-(3-phenoxyphenzyl) methyl]3-(2,2-dichloroethenyl)-2,2-dimethyl cyclopropan-1-
carboxylate] as its active component. It was obtained from the local market and appropriately diluted in
distilled water to administer doses of 65.7 and 93.86 mg/kg bw. These doses represent 1/10 and 1/7 of the
LDSO0 value of the aqueous solution of cypermethrin as stated in previous studies [65,66].

Experimental design

Mature male Swiss albino mice (Mus musculus) aged between 12 - 16 weeks and weighing 25 to 30 grams
were bred in the animal house at the Zoology Department of the Faculty of Science at Tripoli University. The
mice were kept under a natural light/dark photoperiod at a room temperature of 22 + 3°C and were fed a
standard mice diet and had access to drinking water ad libitum. The study received ethical approval from
the Scientific Research and Ethics Committee at the University of Tripoli (SREC-UOT 20-2022). The mice
were divided into three groups, consisting of eight animals each. The control group received distilled water,
while the treatment groups were administered 65.7 mg/kg (bw) cypermethrin (CYP I) and 93.86 mg/kg (bw)
cypermethrin (CYP II). All treatments were administered orally via gavage for a duration of 28 days.
Throughout the study, the mice were observed daily to monitor their survival and identify any potential signs
of toxicity. At the end of the treatment period, the mice were weighed and then euthanized for further
analysis.

Weighing and preserving samples

The mice were weighed at the beginning of the experiment and then after 24 hours of the final treatment.
On the 29th day, the mice were weighed, and the change in body weight was calculated. Blood samples were
collected and centrifuged, and the serum was stored at -20 °C for hormonal analysis. Subsequently, the
sperm were isolated from the vas deferens and subjected to sperm analysis for evaluation. The testes were
then quickly removed, weighed, and fixed in 10% neutral buffered formalin for histological examination.

Sperm count, motility, and morphology evaluation

Semen was collected by gently squeezing each vas deferens in a Petri dish containing 1 mL of physiological
normal saline (0.9% NaCl), which was incubated for 10 minutes at 37 °C before being completely mixed
using a small pipette. A Neubauer hemocytometer counting chamber was used, and the motile and immotile
sperm cells were counted under a light microscope at 400X magnification using the counting system
described by [67] and [68].

The results were expressed as a percentage of motility, and the total sperm count was determined and
expressed as sperm x 10%/mL. Sperm smears were created from the sperm suspension, which was stained
with 1% eosin, for the assessment of sperm morphology using 400X magnification of a standard light
microscope.

Biochemical analysis

Testosterone, LH, and FSH were quantified according to established protocols using chemiluminescence
immunoassay (CLIA) kits (Snibe maglumi, China) and the Cobas e 411 platform (Roche Cobas e 411,
Switzerland).

Histological procedures

Fixed tissue specimens were dehydrated in ethanol, then cleared with xylene and embedded in paraffin.
They were sectioned to a thickness of 5-pm. Then, tissue sections were stained with hematoxylin and eosin
(H&E). Sections were examined under a microscope, and photographs were taken for histological evaluation
and Johnsen's scoring. Two hundred round or nearly round seminiferous tubule cross sections were
examined at 100X magnification per animal to evaluate histological alterations, including detachment of
spermatogenic cells, sloughing of germ cells, and vacuolization in the germinal epithelium. The average
percentage was calculated for each specimen as the method described by [69]. Furthermore, the level of
maturation of the germinal epithelium was assessed utilizing Johnsen's scoring method [70].

Statistical analysis
The variables were tested for normal distribution, and homogeneity. Results were presented as the mean +
standard deviation (SD) of eight mice. The statistical software package (SPSS version 23) was employed to
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analyze variance ANOVA — One way, followed by post-hoc pairwise comparison applying the Duncan test for
inter-group comparisons involving more than two groups. Furthermore, a p-value of less than 0.05 was
considered statistically significant (p < 0.05).

RESULTS

Body and testicular weight

The study found no significant differences in body weight between the treatment and control groups (P >
0.07). Furthermore, there were no significant differences in testis weight between the control and CYP I
group (P=0.056). Meanwhile, the CYP II group showed a significant reduction in testicular weight (P=0.00)
compared to the control group (Table 1).

Table 1. Body weight and testis weight of male mice treated with cypermethrin

Groups Body Weight (G) Testls((?)l eight

Control 28.01£2.13ab 0.11+0.012
CYPI 28.90+0.992 0.11+0.002
CYPII 26.90+1.20b 0.09+0.01b

Data represent the mean * SD of eight mice in each group. Values in the same column for a compartment,
not sharing the same superscript, are significantly different from each other at p < 0.05.

Hormonal assay

The testosterone level was significantly reduced in the groups treated with CYP I and CYP II (P=0.00). While
the LH level was significantly reduced only in the CYP II group (P=0.001) in comparison to the control group.
In contrast, FSH levels were significantly elevated in the CYP I (P=0.03) and CYP II (P=0.00) groups compared
to the control group (Table 2).

Table 2. FSH, LH, and testosterone concentration in male mice treated with cypermethrin

FSH LH Testosterone
Control 2.09£0.19b 9.7810.562 6.611.72
CYPI 2.75+0.87a 8.43+1.08ab 3.4+1.5b
CYP I 3.3610.34a 6.84%1.63P 2.2+0.9b

Data represent the mean + SD of eight mice in each group. Values in the same column for a compartment,
not sharing the same superscript, are significantly different from each other at p < 0.05.

Sperm parameters

According to the findings, exposure to CYP I and CYP II significantly reduced sperm parameters (P=0.00).
Cypermethrin toxicity decreased sperm count and motility percentage, while elevating the percentage of
morphologically abnormal sperm (Table 3). Various abnormalities were discovered in the sperm heads,
midpieces, and tails, as shown in (Figure 1). There was no significant difference in the percentage of
abnormal sperm between the control and CYP I groups (P=0.083), while there was a significant increase in
abnormal sperm in the CYP II group when compared to the control and CYP I groups (P=0.00) (Table 3). The
percentage of head abnormalities, such as amorphous head and hookless head, was significantly higher in
the CYP II group compared to other treatment groups (P=0.00), while sperms with bent tails were
significantly increased in the CYP I and CYP II groups compared to the control group (P=0.00, P=0.039,
respectively) (Figure 2).

Table 3. Sperm count, motility, and morphological abnormality in mice treated with cypermethrin

Variables Motility Sperm count Percentage of normal
percentage (%) (106/ml) sperm (%)
Control 0.62+0.06a 74.8+3.9a 0.42%0.05a
CYP I 0.43+0.05b 37.615.4b 0.39+0.03a
CYP I 0.33+0.04c 33.0+4.7c 0.26+0.05b

Data represent the mean + SD of eight mice in each group. Values in the same column for a compartment, not sharing the

same superscript, are significantly different from each other at p < 0.05.
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Figure 1. Normal and abnormal sperm shape in control and cypermethrin-treated groups. (A) normal
morphology. (B) amorphous head. (C) hookless head. (D) hammer head. (E) bent head. (F) hairpin loop. (G) bent
rp gy. (. p ) ) ( P P

mid-piece. (H) bent tail. 1.0% eosin stain, 40X.
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Figure 2. Percentage of morphologically abnormal sperm in mice treated with cypermethrin. Data represent
the mean * SD of eight mice in each group. Bars not bearing the same alphabet as superscript are
significantly different from each other at p < 0.05.

Histological cross sections

The results of histology assessments demonstrate that testes from the control group had normal histological
structure, a normal pattern of seminiferous tubules with orderly arranged spermatogenic cells, a high
spermatozoa abundance in the lumen, and restricted interstitial space with numerous Leydig cells. The
germinal epithelium was made up of concentric layers of germ cells, spermatogonia, primary and secondary
spermatocytes, spermatids, and spermatozoa, indicating normal spermatogenesis with a very low incidence
of detached, sloughed, or vacuolized seminiferous tubules, as shown in (Table 4) and (Figure 3). Meanwhile,
the testes of CYP-treated groups showed marked damage in histological architecture and organization of
seminiferous tubules as compared to the control group, as well as varying degrees of degenerative
alterations. The low dose CYP I (65.7 mg/kg) caused the amount of sperm in the lumen to decrease and the
interstitial tissue to thicken in some areas, as well as sloughing of germ cells (Figure 4).

The CYP1I (93.86 mg/kg) group's seminiferous tubule lumens were wider and nearly devoid of sperm (Figure
5), and germ cell degenerative changes occurred, such as detachment, sloughing, scattered spermatids,
severe vacuolization of the seminiferous tubule cells, and spermatocyte exfoliation into the lumen. There
was a significant decrease in normal histology criteria in the CYP I and CYP II groups in comparison to the
control group (P=0.00), as well as a significant decrease in the CYP II group when compared to the CYP I
group (P=0.00), as shown in (Table 4). Normal spermatogenesis was observed in both the control and CYP I
groups, and there was no significant difference in the mean Johnsen’s score (P=1.00). Meanwhile, in the
CYP II group, nearly all tubules showed maturation arrest, and the mean Johnsen’s score was significantly
lower than that in the control group (P=0.00) (Table 4).

Table 4. Testis histology assessment and Johnsen’s score of mice treated with cypermethrin

Percentage of seminiferous tubules ,
Variables Vacuolized Johnsen’s
Normal% Detached% Sloughed% % score
Control 87.67+1.53a 11.33+1.53a 1.00£0.00¢ 0.33+0.58¢ 10.00+0.002
CYPI 54.67+1.53p 7.00+1.73p 14.67+2.89b 23.33+1.53b 10.00+0.00=
CYPII 1.67+0.58¢ 7.00£2.65P 52.3342.52a 40.00+4.002 4.67+0.58p
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Data represent the mean = SD of eight mice in each group. Values in the same column for a compartment,
not sharing the same superscript, are significantly different from each other at p < 0.05.

Figure 3. Photomicrograph of a histological section of the control group mouse testis, showing
normal histological structure, normal pattern of seminiferous tubules with orderly arranged
spermatogenic cells consisting of concentric layers of spermatogonia (Sg), primary (Ps) and
secondary (Ss) spermatocytes, spermatids (Sd) and spermatozoa (Sp). High spermatozoa
concentration in the lumen (Lu) and little interstitial space with abundant Leydig cells
(arrowhead). (H and E stain, A:10X and B:40X).
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Figure 4. Histological sections of the testes of male mice treated with 65.7 mg/kg cypermethrin.
The number of sperm in the lumen (Lu) tended to decrease, and the germ cells began to slough (red
arrows). At the same time, spermatogenic cells, spermatogonia (Sg), primary (Ps) and secondary
(Ss) spermatocytes, spermatids (Sd) and spermatozoa (Sp), as well as Leydig cells (arrow head), are
still observed. While interstitial tissue appears to be thicker in some areas (*). (H and E stain,

A:10X and B:40X).
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Figure 5. Histological sections of testes of male mice treated with 93.86 mg/kg cypermethrin. (A)
The lumens of the seminiferous tubules were increased in size and nearly devoid of sperm (#), and
varying degrees of germ cell degenerative changes occurred, such as sloughing of germ cells (red
arrows), vacuolation (v), and detachment of germinal epithelium (black arrows). (H and E stain,
A:10X and B:40X).

Discussion
Differences in body and reproductive organ weights are a useful indicator of reproductive health. The body
weight of the mice appeared unaffected by the various treatments applied in this study. However, the

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 06-11-2025 - Accepted: 05-01-2026 - Published: 11-01-2026 97



Algalam Journal of Medical and Applied Sciences. 2026;9(1):93-101
https://doi.orq/10.54361/ajmas.269116

testicular weight significantly decreased when treating mice with CYP II (93.86 mg/kg bw). The observed
reduction in body and testis weight aligns with a well-established body of literature documenting similar
losses in overall and reproductive organ mass [44,59,60,63,71]. In contrast, Elbetieha et al. [54] observed a
low body weight gain despite a significant increase in the weights of the testes, seminal vesicles, and
preputial gland. The accumulation of interstitial connective tissue observed in the testes may have caused
these increases. According to Crumpton et al. [72] and Mandal and Das [73], a reduction in testis weight is
an accepted indicator of testicular and reproductive toxicity. This reduction can be attributed to several
factors, including decreased food intake [74], testicular degeneration resulting from cypermethrin toxicity
[75], or cell apoptosis [76], leading to enhanced pro-apoptotic activity and consequent cell death [77].
Previous studies revealed that CYP significantly up-regulated apoptotic genes such as p53 and Cas3 in the
brain and testis tissues, while down-regulating the expression of the Bcl-2 gene, which is an anti-apoptotic
gene [78]. This mechanism provides a plausible explanation for the testicular weight loss seen in our CYP
[I-treated group.

Within the present research, after administering cypermethrin to mice, the amount of testosterone level was
considerably reduced, whereas FSH levels were significantly increased. This finding was consistent with the
results of [61], which revealed a significant reduction in serum testosterone level and a significant increase
in serum FSH concentration in male rats treated daily with cypermethrin at a dose of 60 mg/kg body weight.
While, [79] revealed that cypermethrin significantly lowered serum testosterone level while elevating LH level,
without altering serum FSH hormone level. Meanwhile, other reports noted that testosterone, as well as FSH
and LH levels, have shown a significant reduction when exposing mice [44,59] and rats [54,60,62,80] to
cypermethrin. Furthermore, researchers reported similar testosterone level results in male animals exposed
to other synthetic pyrethroids like fenvalerate in rats [81] and permethrin in mice [82]. In a study by Zhang
et al. [82], damage to the Leydig cell mitochondrial membrane in adult mice was shown to disrupt
steroidogenesis, resulting in decreased testicular testosterone biosynthesis. Disruption of Leydig cell viability
can impair testicular steroidogenesis, leading to disturbances in spermatogenesis and fertility issues.
Studies indicated that steroidogenic acute regulatory protein (StAR) expression decreased significantly in
cypermethrin-treated rats [64]. Further research demonstrated that cypermethrin significantly down-
regulated the expression of Leydig cell genes, Lhegr, Star, Cypllal, and Cypl7al and their
proteins, leading to the conclusion that cypermethrin inhibits the development and function of Leydig cells
in male rats in late puberty [79]. On the other hand, testosterone treatment in cypermethrin-treated rats
ameliorated its toxic effects by restoring testosterone biosynthesis, spermatogenesis, and sperm maturation
events [64].

These findings indicate that cypermethrin has a detrimental effect on sperm quality. The administration of
two doses of cypermethrin resulted in a significant reduction in sperm count, motility, and normal
morphology, alongside an increase in sperm abnormalities. These results are supported by the studies of
Wang et al. [44], Elbetieha et al. [54], Joshi et al. [60], Li et al. [61], Sharma et al. [62], Abdel-Razik, et al.
[63], Katragadda, et al. [64] Abd- Ellaah, et al. [80] and Zhang et al. [82], In a study by Zhang et al. [82], it
was proposed that diminished levels of testosterone could be a key factor contributing to the observed decline
in sperm concentration and movement, alongside structural defects in the testes of mice exposed to cis-
permethrin. On the same side, Yao and Wang [83] revealed that pyrethroids can reduce sperm count and
sperm motility, increase the abnormal sperm count, and cause deformity of the sperm head. Other studies
explain that cypermethrin's effects are due to the overproduction of free radicals. For example, oxidative
stress has been proposed to play an essential role in cypermethrin-induced reproductive dysfunction [44,
62]. Chronic exposure to CYP increased levels of certain cytochrome P450 enzymes and decreased
glutathione S-transferase activity, indicating prolonged toxicological impact [84]. Furthermore, Agarwal et
al. [85] found a correlation between increased production of reactive oxygen species and reduced sperm
motility.

In the CYP I group, histopathology assessments revealed that some seminiferous tubule germ cells began to
slough, detach, and vacuolize, and the number of sperm in the lumen tended to decrease. In the group
treated with CYP II, the lumens of the seminiferous tubules were larger and almost empty of sperm.
Additionally, nearly all tubules showed maturation arrest, and the average Johnsen's score was notably
lower than in the control group. This led to a significant decrease in all histopathology criteria in both the
CYP I and CYP II groups compared to the control group. Additionally, there was a significant decrease in the
CYP II group compared to the CYP I group. According to several studies [44, 59, 60, 61, 71], prolonged
exposure to cypermethrin harms the testes by changing their tissue structure and disrupting sperm
production. These negative effects may be the result of lowered plasma testosterone or the formation of free
radicals in the testicular tissue [72,73,86,87]. Fascinatingly, Ravula and Yenugu [88] observed that
prolonged exposure to pyrethroids disrupts the expression of genes. These genes regulate apoptosis,
spermatogenesis, steroidogenesis, and male gamete genetic reprogramming.
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Conclusion

This study indicates that cypermethrin has considerable harmful effects on the male reproductive system,
as seen by hormonal alterations, sperm suppression, and unfavorable effects on semen parameters in mice
treated with cypermethrin. This study implies that pesticides should not be used excessively.
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