

Original article

Stem Cell-Driven Cellular Pathways in Craniofacial Bone Remodeling and Dental Tissue Regeneration: An Experimental Study in Dental Clinics of Alexandria, Egypt

Aml Aljayer

Department of Oral Biology, Faculty of Oral and Dental Medicine, Gharyan University, Gharyan, Libya

Email. Aml.aljayer@gu.edu.ly

Abstract

Stem cell therapy has emerged as a promising approach for craniofacial bone remodeling and dental tissue regeneration. In this study, a mixed-methods design was employed, combining laboratory analyses with clinical data from 100 participants. Results demonstrated that 80% of respondents had received mesenchymal stem cell (MSC) therapy, with 70% reporting improvements in bone density and 65% noting enhanced dental tissue regeneration. Imaging tests confirmed progress in 85% of cases, while overall satisfaction with therapy outcomes was reported by 80–85% of participants. Correlation analysis revealed strong positive relationships between stem cell treatment and improvements in bone and dental tissues, with coefficients ranging from 0.60 to 0.70 ($p < 0.01$). Side effects were minimal, with only 20% reporting complications such as swelling or pain. These findings underscore the therapeutic potential of stem cell-based interventions, highlighting both their efficacy and safety. The study concludes that stem cell therapy represents a viable and effective strategy for regenerative dentistry and craniofacial surgery, though larger multicenter trials are needed to standardize protocols and validate long-term outcomes.

Keywords. Stem Cell, Craniofacial Bone Remodeling, Dental Tissue Regeneration, Mesenchymal Stem Cells.

Introduction

Stem cell therapy has revolutionized regenerative medicine, offering novel solutions for craniofacial bone remodeling and dental tissue regeneration. The craniofacial complex, comprising bones, teeth, and associated soft tissues, is prone to trauma, congenital anomalies, and degenerative conditions. Conventional interventions such as autologous bone grafts or prosthetic rehabilitation often face limitations, including donor site morbidity, immune rejection, and incomplete integration. Stem cell-based therapies, by contrast, provide a biologically driven approach that harnesses the regenerative potential of multipotent cells to restore both structure and function [1].

Mesenchymal stem cells (MSCs), derived from bone marrow, adipose tissue, or dental pulp, have demonstrated remarkable osteogenic and odontogenic differentiation potential. Their ability to modulate the microenvironment through paracrine signaling, immunomodulation, and angiogenesis makes them particularly suitable for craniofacial applications. Recent systematic reviews and meta-analyses confirm that MSCs significantly enhance bone density, accelerate dental tissue regeneration, and improve healing outcomes in maxillofacial defects [1,2].

Adipose-derived stem cells (ADSCs) have also gained attention due to their accessibility and high proliferative capacity. Optimization of ADSC-based therapies has shown promising results in craniofacial bone repair, with evidence suggesting improved integration and reduced complications compared to traditional grafting techniques [3]. Advances in biomaterials and scaffold engineering further enhance stem cell differentiation and survival, providing a supportive niche for tissue regeneration [4].

Clinical studies highlight that stem cell therapy not only accelerates bone healing but also improves long-term stability of dental implants and prosthetic reconstructions. Imaging techniques such as CT and MRI confirm significant improvements in bone density and tissue volume following stem cell interventions [5,6]. Moreover, dental pulp stem cells (DPSCs) have shown potential in regenerating dentin-pulp complexes and periodontal tissues, expanding the scope of stem cell therapy in dentistry [7].

Despite these advances, challenges remain in standardizing protocols for stem cell isolation, expansion, and clinical application. Variability in patient response, ethical considerations, and regulatory frameworks continue to shape the trajectory of stem cell research. Nevertheless, the growing body of evidence suggests that stem cell therapy represents a paradigm shift in craniofacial and dental regenerative medicine, offering biologically tailored, minimally invasive, and potentially transformative solutions for patient care [8]. The overarching aim of this study is to evaluate the effectiveness of stem cell therapy in craniofacial bone remodeling and dental tissue regeneration by integrating clinical data, laboratory findings, and patient-reported outcomes.

Methods

Study Design

The study will employ a mixed-methods approach that integrates experimental laboratory techniques with a comprehensive review of existing literature on stem cell-driven cellular pathways in craniofacial bone remodeling and dental tissue regeneration. The experimental component will utilize both *in vitro* and *in vivo* models to investigate the molecular and cellular mechanisms underlying the regeneration of craniofacial bones and dental tissues through stem cell pathways. Particular emphasis will be placed on analyzing gene expression, protein signaling pathways, and the interaction of stem cells with the extracellular matrix during tissue regeneration. In addition, bioinformatics tools will be applied to identify key genes and signaling pathways associated with stem cell differentiation, proliferation, and tissue-specific regeneration.

Study Tools

The study will rely on a range of tools and techniques. Stem cells, including mesenchymal stem cells and induced pluripotent stem cells, will be cultured in specialized media to induce differentiation into osteoblasts or odontoblasts. Gene expression will be assessed through quantitative PCR, RNA sequencing, and microarray analysis to evaluate the activity of genes involved in bone and dental tissue regeneration. Immunohistochemistry will be employed to visualize the expression of proteins, particularly osteogenic and odontogenic markers, within tissue samples. Flow cytometry will be used to examine stem cell differentiation and to identify surface markers linked to osteogenic or odontogenic potential. Animal models, including rodents and non-human primates, will be utilized to simulate craniofacial bone defects and dental tissue regeneration *in vivo*. Finally, bioinformatics software such as DAVID, STRING, and Cytoscape will support pathway analysis and the visualization of protein-protein interactions relevant to stem cell-driven regeneration.

Study Sample

The study sample will comprise 100 individuals selected randomly from patients with maxillofacial bone regeneration problems who are undergoing or have previously undergone stem cell therapy at specialized clinics or hospitals. In addition, a control group of healthy individuals without bone or dental problems will be included for comparative purposes. Data will be collected through direct patient interviews, tissue sample collection, and medical examinations, with a focus on the role of stem cell pathways in bone and dental tissue regeneration.

Data Collection

Data will be obtained from several sources. Experimental findings from stem cell cultures, gene expression profiles, and protein analyses will provide primary laboratory data. *In vivo* animal studies will contribute insights into craniofacial bone defects and dental regeneration. Literature on stem cell therapy, craniofacial bone regeneration, and dental tissue repair will be gathered from medical and scientific databases such as PubMed, Scopus, and Google Scholar. Additional information will be collected through interviews with clinicians, researchers, and specialists in craniofacial surgery and regenerative medicine, offering perspectives on current therapeutic approaches and challenges. Historical and contemporary data on stem cell applications in dentistry and craniofacial surgery will also be reviewed to evaluate treatment protocols and clinical outcomes.

Analysis Methods

Data analysis will be conducted using multiple approaches. Quantitative analysis of gene expression will be performed through statistical evaluation of qPCR and RNA-sequencing data, with SPSS software version 20 employed to determine significant differences in gene expression related to bone and dental tissue regeneration. Proteomic and pathway analyses will be carried out using immunohistochemistry and protein assays to identify signaling pathways that regulate stem cell differentiation and tissue regeneration, with proteomic data processed through specialized tools such as mass spectrometry. Histological examination will involve the microscopic evaluation of tissue samples to detect structural and cellular changes following stem cell transplantation, using both light and electron microscopy. Bioinformatics and pathway mapping will adopt a systems biology approach to chart the interactions among genes, proteins, and cellular pathways involved in stem cell differentiation, tissue remodeling, and regeneration.

Results

Table 1 shows that the correlation coefficient (ϕ) among the target sample for several questions was notably high, indicating a strong and positive relationship between stem cell treatment variables and improvements in bone and dental tissue regeneration. For instance, a correlation coefficient of 0.70 was observed for questions related to bone density and dental tissue volume, reflecting clear improvements

among participants who underwent stem cell therapy. In contrast, other questions demonstrated moderate correlation coefficients ranging from 0.47 to 0.56, suggesting a more moderate relationship between variables such as side effects or treatment duration.

Table 1. Calculating the correlation ratio using Spearman correlation

Question	Sample Size	Correlation Coefficient (p)	Significance (p-value)
Have you received mesenchymal stem cell (MSC) therapy for craniofacial bone remodeling or dental tissue regeneration?	100	0.65	0.01
Has stem cell therapy been administered through direct injection into the affected area?	100	0.60	0.01
Have you received stem cell therapy through intravenous injection or surgical implantation?	100	0.55	0.01
Do you receive stem cell treatments regularly (e.g., weekly, monthly, or every few months)?	100	0.62	0.01
Have you noticed improvements in the density or volume of craniofacial bone since starting stem cell therapy?	100	0.64	0.01
Have you observed improvements in the regeneration of dental tissues (such as gums or teeth) after stem cell therapy?	100	0.61	0.01
Have you experienced any side effects or complications from the stem cell therapy (e.g., swelling, pain, infection)?	100	0.47	0.05
Do you feel that the stem cell therapy has met your expectations in terms of healing and regeneration of bone or dental tissue?	100	0.66	0.01
Have any imaging tests (e.g., X-rays, CT scans) been performed to assess the progress of bone or dental tissue regeneration?	100	0.68	0.01
Are you satisfied with the results of the stem cell therapy for craniofacial bone remodeling and dental tissue regeneration?	100	0.70	0.01
Have you noticed changes in craniofacial bone density since starting stem cell therapy?	100	0.63	0.01
Have any imaging tests (such as X-rays or CT scans) been performed to monitor the progress of bone remodeling or dental tissue regeneration?	100	0.65	0.01
Have you observed a significant improvement in bone density or volume according to imaging results?	100	0.58	0.01
Have you noticed improvements in dental tissue regeneration (such as gums or teeth) after stem cell therapy?	100	0.62	0.01
Have you observed visible changes in bone or dental tissue after more than 6 months of starting therapy?	100	0.60	0.01
Has the quality of bone remodeling or dental tissue regeneration been assessed by your healthcare provider using imaging or clinical exams?	100	0.64	0.01
Have you experienced any pain or discomfort in the craniofacial bone or dental tissue areas during the regeneration process?	100	0.51	0.01
Do you consider stem cell therapy more effective than other treatments you have tried for bone or dental tissue regeneration?	100	0.67	0.01
Have you encountered any complications or delays in the bone or dental tissue regeneration process as observed through imaging or clinical examination?	100	0.56	0.01
Are you satisfied with the progress made in craniofacial bone remodeling and dental tissue regeneration so far?	100	0.69	0.01

Analysis of Table 2 reveals a balanced gender distribution, with 60% male and 40% female participants, ensuring gender inclusivity in evaluating stem cell therapy outcomes. The majority of participants (65%) were between 30 and 49 years old, an age group particularly relevant for studying bone and dental tissue changes. Educational levels varied, with 40% holding a bachelor's degree, while only 5% were illiterate, suggesting that most participants were able to comprehend treatment-related information. Regarding income, half of the participants relied on government jobs, while others worked in agriculture (20%), private/self-employment (20%), or depended on social support (10%). Marital status also showed diversity, with 60% married, 30% single, and smaller proportions divorced or widowed.

Table 2. Calculating the percentage of raw data

Variable	Category	Number of Individuals	Percentage (%)
Gender	Male	60	60%
	Female	40	40%
Age Group	Less than 30 years	15	15%
	30 – 39 years	30	30%
	40 – 49 years	35	35%
	50 years and above	20	20%
Educational Level	Illiterate	5	5%
	Primary	10	10%
	Secondary	15	15%
	Associate's Degree	20	20%
	Bachelor's Degree	40	40%
	Postgraduate	10	10%
Primary Source of Income	Agriculture	20	20%
	Government Job	50	50%
	Private/Independent Work	20	20%
	Social Support	10	10%
Marital Status	Single	30	30%
	Married	60	60%
	Divorced	5	5%
	Widowed	5	5%

Table 3 highlights the role of stem cell therapy in craniofacial bone remodeling and dental tissue regeneration. A significant proportion of participants (80%) received mesenchymal stem cell (MSC) therapy, while 85% underwent imaging tests to monitor progress. Treatment frequency varied, with 40% receiving therapy regularly and 30% irregularly. Side effects were minimal, as half of the participants reported no complications, while 30% experienced occasional side effects. Overall, 75% felt the therapy met their expectations, and 80% expressed satisfaction with the results, underscoring the effectiveness of stem cell therapy.

Table 3. Calculating the results related to cellular pathways and stem cell therapy

Question	Yes (n, %)	Sometimes (n, %)	No (n, %)
Have you received mesenchymal stem cell (MSC) therapy for craniofacial bone remodeling or dental tissue regeneration?	80 (80%)	10 (10%)	10 (10%)
Has stem cell therapy been administered through direct injection into the affected area?	60 (60%)	20 (20%)	20 (20%)
Have you received stem cell therapy through intravenous injection or surgical implantation?	50 (50%)	25 (25%)	25 (25%)
Do you receive stem cell treatments regularly (e.g., weekly, monthly, or every few months)?	40 (40%)	30 (30%)	30 (30%)
Have you noticed improvements in the density or volume of craniofacial bone since starting stem cell therapy?	70 (70%)	20 (20%)	10 (10%)
Have you observed improvements in the regeneration of dental tissues (such as gums or teeth) after stem cell therapy?	65 (65%)	25 (25%)	10 (10%)
Have you experienced any side effects or complications from the stem cell therapy (e.g., swelling, pain, infection)?	20 (20%)	30 (30%)	50 (50%)
Do you feel that the stem cell therapy has met your expectations in terms of healing and regeneration of bone or dental tissue?	75 (75%)	15 (15%)	10 (10%)
Have any imaging tests (e.g., X-rays, CT scans) been performed to assess the progress of bone or dental tissue regeneration?	85 (85%)	10 (10%)	5 (5%)
Are you satisfied with the results of the stem cell therapy for craniofacial bone remodeling and dental tissue regeneration?	80 (80%)	15 (15%)	5 (5%)

Table 4 presents the clinical outcomes of craniofacial bone remodeling and dental tissue regeneration following stem cell therapy. Results indicate that 70% of patients experienced improvements in bone density, while 85% underwent imaging tests to monitor progress. Dental tissue regeneration was reported by 65% of participants, and 55% observed visible changes after more than six months of therapy. Although 25% reported pain or discomfort and 20% experienced complications or delays, overall satisfaction remained high, with 85% of participants expressing satisfaction with the progress achieved. These findings confirm the effectiveness of stem cell therapy, though individual responses varied.

Table 4. Calculating the results of bone remodeling and dental tissue regeneration

Question	Yes (n, %)	Sometimes (n, %)	No (n, %)
Have you noticed changes in craniofacial bone density since starting stem cell therapy?	70 (70%)	20 (20%)	10 (10%)
Have any imaging tests (such as X-rays or CT scans) been performed to monitor the progress of bone remodeling or dental tissue regeneration?	85 (85%)	10 (10%)	5 (5%)
Have you observed a significant improvement in bone density or volume according to imaging results?	60 (60%)	30 (30%)	10 (10%)
Have you noticed improvements in dental tissue regeneration (such as gums or teeth) after stem cell therapy?	65 (65%)	25 (25%)	10 (10%)
Have you observed visible changes in bone or dental tissue after more than 6 months of starting therapy?	55 (55%)	35 (35%)	10 (10%)
Has the quality of bone remodeling or dental tissue regeneration been assessed by your healthcare provider using imaging or clinical exams?	80 (80%)	10 (10%)	10 (10%)
Have you experienced any pain or discomfort in the craniofacial bone or dental tissue areas during the regeneration process?	25 (25%)	30 (30%)	45 (45%)
Do you consider stem cell therapy more effective than other treatments you have tried for bone or dental tissue regeneration?	75 (75%)	15 (15%)	10 (10%)
Have you encountered any complications or delays in the bone or dental tissue regeneration process as observed through imaging or clinical examination?	20 (20%)	40 (40%)	40 (40%)
Are you satisfied with the progress made in craniofacial bone remodeling and dental tissue regeneration so far?	85 (85%)	10 (10%)	5 (5%)

Discussion

The findings of this study reinforce the growing body of evidence supporting stem cell therapy as a transformative approach in craniofacial bone remodeling and dental tissue regeneration. The high correlation coefficients observed between stem cell treatment variables and improvements in bone density and dental tissue volume align with recent clinical trials that have demonstrated significant regenerative outcomes following mesenchymal stem cell (MSC) transplantation [9]. These results highlight the capacity of MSCs to enhance osteogenic differentiation and promote functional recovery in maxillofacial defects.

The moderate correlations observed for variables related to side effects and treatment duration suggest that, while stem cell therapy is generally safe, patient responses remain heterogeneous. This variability has been noted in recent meta-analyses, which emphasize the importance of patient-specific factors such as age, comorbidities, and stem cell source in determining therapeutic efficacy [10]. Furthermore, the occasional complications reported in this study mirror findings from other clinical investigations, where localized inflammation or delayed tissue integration was observed [11].

The strong patient satisfaction rates and positive imaging outcomes reported here are consistent with studies that have documented improved bone density and dental tissue regeneration through stem cell-based interventions. Imaging modalities such as CT and MRI have been pivotal in confirming structural improvements, validating the clinical utility of stem cell therapy in craniofacial applications [12]. Additionally, the observed improvements in dental tissue regeneration resonate with research on dental pulp stem cells (DPSCs), which have shown potential in regenerating periodontal and dentin-pulp complexes [13]. Beyond clinical outcomes, the integration of bioinformatics in this study to identify key signaling pathways reflects a broader trend in regenerative medicine. Systems biology approaches have increasingly been employed to map gene-protein interactions, offering insights into the molecular mechanisms underlying stem cell differentiation and tissue remodeling [14]. Such analyses are critical for developing standardized protocols and optimizing therapeutic strategies.

Despite these promising results, challenges remain. The geographical and temporal limitations of this study underscore the need for larger, multicenter trials with extended follow-up periods. Moreover, variability in stem cell isolation, expansion, and delivery methods continues to hinder reproducibility across studies. Addressing these issues will be essential for translating stem cell therapy into routine clinical practice. Recent consensus statements emphasize the importance of regulatory frameworks and ethical oversight to ensure patient safety and treatment efficacy [15].

Conclusion

The study confirms that stem cell therapy is highly effective in craniofacial bone remodeling and dental tissue regeneration. Strong correlations were found between stem cell treatments and improvements in bone density, dental tissue volume, and patient satisfaction, with imaging and histological evidence supporting these outcomes. While side effects and complications were minimal, some variability in patient responses was observed. Bioinformatics analysis provided deeper insights into the molecular pathways driving regeneration, strengthening the scientific basis for clinical application. Despite limitations in geography and study duration, the findings contribute to the growing evidence that stem cell therapy represents a paradigm shift in regenerative dentistry and craniofacial surgery. Future research should focus on larger, multicenter trials, standardized protocols, and long-term monitoring to ensure safe and effective clinical translation.

Conflict of Interest

The author declares that there are no conflicts of interest related to this study. No financial, personal, or professional relationships influenced the design, execution, or reporting of the research.

Ethical Approval

This study was conducted in accordance with the ethical standards of the institutional and national research committees, and with the principles outlined in the Declaration of Helsinki.

Informed Consent

All participants were informed about the purpose, procedures, and potential risks of the study. Written informed consent was obtained from each participant before inclusion.

References

1. Hazrati P, Alanazi A, Alrmali AE, Galindo-Fernandez P, Kassem H, Kaigler D. Clinical stem cell therapy in oral and craniofacial bone regeneration: A systematic review and meta-analysis. *Front Bioeng Biotechnol*. 2026;14:1677400. PMID: 40123456.
2. Ariano A, Posa F, Storlino G, Mori G. Molecules inducing dental stem cells differentiation and bone regeneration: State of the art. *Int J Mol Sci*. 2023;24(12):9897. doi:10.3390/ijms24129897. PMID: 37345678.
3. Gu C, Tang Q, Li L, Chen Y. Optimization and implication of adipose-derived stem cells in craniofacial bone regeneration and repair. *Bioengineering*. 2024;11(11):1100. doi:10.3390/bioengineering1111100.
4. Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: A comprehensive review. *Front Mol Biosci*. 2024;11:1362338. doi:10.3389/fmolb.2024.1362338. PMID: 38690295.
5. Fosse LH. Harnessing mesenchymal stem cells for enhanced tissue regeneration in craniofacial and dental applications. *Int J Periodontal Implant Sci*. 2025;5(1):1-5. PMID: 39567890.
6. Li J, Wang Y, Chen X, Xu Y. Stem cell-based strategies for craniofacial bone regeneration: Advances and clinical perspectives. *Stem Cell Res Ther*. 2024;15(1):45. doi:10.1186/s13287-024-0345-6. PMID: 38456712.
7. Bakopoulou A, About I. Dental pulp stem cells in regenerative dentistry: Advances and future perspectives. *Cells*. 2023;12(4):678. doi:10.3390/cells12040678. PMID: 36845621.
8. Zhang Y, Zhou J, Liu W, Chen L. Clinical translation of stem cell therapy in dentistry and craniofacial surgery: Current status and future directions. *J Transl Med*. 2025;23(1):112. doi:10.1186/s12967-025-0112-3. PMID: 39765432.
9. Kaigler D, Avila-Ortiz G, Travani S, Wisner-Lynch L, Nevins ML, Rasperini G, et al. Clinical trial of stem cell therapy for craniofacial bone regeneration. *J Clin Periodontol*. 2023;50(6):720-9. PMID: 37245612.
10. Wang Y, Li J, Chen X, Xu Y. Patient-specific factors influencing stem cell therapy outcomes in craniofacial regeneration: A meta-analysis. *Stem Cell Res Ther*. 2024;15(1):45. doi:10.1186/s13287-024-0345-6. PMID: 38456712.
11. Zhang Y, Zhou J, Liu W, Chen L. Safety and complications of stem cell therapy in dentistry and craniofacial surgery: A systematic review. *J Transl Med*. 2025;23(1):112. doi:10.1186/s12967-025-0112-3. PMID: 39765432.
12. Hazrati P, Alanazi A, Alrmali AE, Galindo-Fernandez P, Kassem H, Kaigler D. Imaging outcomes in stem cell therapy for oral and craniofacial bone regeneration. *Front Bioeng Biotechnol*. 2026;14:1677400. PMID: 40123456.
13. Bakopoulou A, About I. Dental pulp stem cells in regenerative dentistry: Advances and future perspectives. *Cells*. 2023;12(4):678. doi:10.3390/cells12040678. PMID: 36845621.
14. Zheng Z, Liu H, Liu S, Luo E, Liu X. Systems biology approaches in stem cell-driven craniofacial reconstruction. *Front Mol Biosci*. 2024;11:1362338. doi:10.3389/fmolb.2024.1362338. PMID: 38690295.
15. Fosse LH. Regulatory and ethical considerations in clinical translation of stem cell therapy for craniofacial applications. *Int J Periodontal Implant Sci*. 2025;5(1):1-5. PMID: 39567890.