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Abstract

A model of the equations of two-dimensional problems is studied in a half space, with Porous material
under the effect of gravity and an inclined load in the context of the three theories of Lord—Shulman,
Green-Lindsay, and classical-coupled. The inclined load is assumed to be a linear combination of a
normal mode and a tangential load. The formulation is performed in the context of the Lord-Shulman
and Green-Lindsay theories, as well as the classical dynamical coupled theory. Comparisons are
made with the results in different values of the angle of inclination, as well as the absence and
presence of gravity.
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Introduction

Double-porosity materials, characterized by two well-defined networks of interconnected voids or pores, have
attracted significant interest in material science, engineering, and geophysics. These materials possess high
permeability and lightweight properties, along with enhanced mechanical performance, making them well-
suited for various applications, including energy storage systems, geotechnical engineering, biomedical
devices, and advanced composite structures. The coexistence of macroporosity and micro-porosity presents
both challenges and opportunities, particularly in understanding their mechanical and thermal behavior
within the context of thermoelasticity.

Thermoelasticity theories, which admit a finite speed for thermal signals, have garnered considerable
attention over the past four decades. In contrast to the conventional coupled thermoelasticity theory based
on a parabolic heat equation,Biot [1], which predicts an infinite speed for the propagation of heat, these
theories involve a hyperbolic heat equation. They are referred to as generalized thermoelasticity theories.
Two generalizations to the coupled theory were introduced. The first is ascribed to Lord and Shulman [2]
who introduced the theory of generalized thermoelasticity with one relaxation time by postulating a new law
of heat conduction to replace the classical Fourier's law. Othman [3] constructed the model of generalized
thermoelasticity in an isotropic elastic medium under the dependence of the modulus of elasticity on the
reference temperature with one relaxation time.

The second generalization to the coupled theory of thermoelasticity is what is known as the theory of
thermoelasticity with two relaxation times, or the theory of temperature rate-dependent thermoelasticity,
and was proposed by Green and Lindsay [4]. It is based on a form of the entropy inequality proposed by
Green and Laws [3].

The classical theory of elasticity generally disregarded the influence of gravity. Bromwich [6] was the first to
explore the impact of gravity on wave propagation in an elastic solid medium. Abo-Dahab et al. [7] examined
the Effect of gravity on piezo-thermoelasticity within the dual-phase-lag model. Said et al. [8] have studied
the Effect of temperature-dependent properties and gravity on a nonlocal poro-thermoelastic medium with
MDD via the G-L Model. Abd Allaand Ahmed [9] investigated the Stoneley and Rayleigh waves in a non-
homogeneous orthotropic elastic medium under the influence of gravity. Said and Othman [10] have
investigated the 2D problem of a nonlocal thermoelastic diffusion solid with gravity via three theories.
Othman et al. [11] studied the Influence of gravity and hall current on a two-temperature fiber-reinforced
magneto-visco-thermo-elastic medium using a modified Green-Lindsay model. Kalkal et al. [12] have
investigated the Three-phase-lag functionally graded thermoelastic model having double porosity and
gravitational effect. Amnah et al. [13] have investigated the effect of gravity on a magneto-thermoelastic
porous medium with the framework of a memory-dependent derivative in the context of the 3PHL model.
Said [14] studied A viscoelastic-micropolar solid with voids and micro-temperatures under the effect of the
gravity field.

The effect of an inclined load on a functionally graded, temperature-dependent thermoelastic material was
analyzed by Barak Dhankhar [15]. To examine the thermally insulated stress-free surface of a thermoelastic
solid half-space as a result of an inclined load. Othman et al. [16] discussed the effect of gravity and inclined
load in a micropolar-thermoelastic medium possessing cubic symmetry under G-N theory. Said. [17] studied
the impact of rotation and inclined load on a nonlocal fiber-reinforced thermoelastic half-space via a simple-
phase-lag model .Said et al. [18] studied the Effect of an inclined load on a nonlocal fiber-reinforced visco-
thermoelastic solid via a dual-phase-lag model. Othman et al. [19], and Sheok et al. [20] on the effects of
inclined load on different thermoelastic media. Deswal et al. [21] discussed disturbances in an initially
stressed fiber-reinforced orthotropic thermoelastic medium due to an inclined load. A transversely isotropic
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magneto-thermoelastic solid with two temperatures and no energy loss from an inclined load was examined
by Lata and Kaur [22]. Alharbi [23] introduced two temperature theories on a micropolar thermoelastic
medium with voids under the effect of an inclined load via a three-phase-lag model. In the present work, we
shall formulate the generalized thermoelastic medium with a Gravitational Field for three theories with
Porous material and inclined load, and solve for the temperature, stress components, and displacement
components. The normal method is used to obtain the exact expression for the considered variables. A
comparison is carried out between the considered variables as calculated from the generalized
thermoelasticity based on L-S, G-L, and coupled theories in the absence and presence of gravity. A
comparison is also made between the three theories with different values of the angle of inclination.

Formulation Of the Problem and Basic Equations
We consider a homogeneous isotropic elastic body with voids in a half-spacey > 0Qunder the effect of a
constant gravitational field of acceleration g. Plane strain in the XYy -plane with the displacement vector

(u,v,0) such that U =U(x,y,t), V =V (x,y t). Suppose that an inclined line load f; per unit length is acting

on the z-axis, and its inclination to the x-axis is 8.

The basic governing equations of a linear thermoelastic medium with voids under the effect of gravity, based
on (L-S), (G-L), and coupled theories, are
The stress-strain relation is written as:

?,
o =[1ey +b¢_ﬂ(1+UE)T]5ij tuey, (1)
1
eu:E(ui,j"'uj,i)v (2)
The dynamical equations of an elastic medium are given by
e oT ov o’u
pVu Gt )b S8 ey, SV pg =y O @)
dX X ot
de oT du o
qu+u+m——H>¢ v, W pg =y o8 @
dy dy aX ot
The equation of voids is
aVig—be —Ep—awb aa—(?+m(1+v —)T = pwgt?, (5)
The heat conduction equation,
KVT = pCe (L+7, aa_t)T + BT, (1+ny7, aa_t)e +m To(L+nyz, aa_t)¢ (6)

Where 0; are the components of the stress tensor, €; are the components of strain, A, 4 are the lame

constants, =31+ 2,11)0(t such that @, is the coefficient of thermal expansion, 5ij is the Kronecker delta,
i,j =X,y. a,b,rf, @,, M,y are the material constants due to the presence of voids? p is the density, CE is
the specific heat at constant strain, N, ,N, are parameters, 7,, V, are the thermal relaxation times, K is

the thermal conductivity, T, The reference temperature is chosen so that |(T —TO)/TO| 11, ¢ is the change

in the volume fraction field.
For a two-dimensional problem in the xy-plane, Eq. (1) can be written as:

du OJv 0 du ov -
o, =[A(—+—)+bod-LA+v,—)T]0. + u(—+—), i.j=12. (7
=G+ 5 Hbg= BV, ITIS, + a5, =120
Consider the following non-dimensional variables:
! ] * O- 0 1 T
(6= Loy, W= L) oy = Do, = G 1=1
C, C, 2] Cl 0
2
t = at, glzi*’ C12=)b+2}u’ a)fzﬁ_vo'Za)Ivo, 7' =01, (8)
c,m; yo, Kk

Using the above non-dimensional variables defined in Eq. (8), the above governing equations take the
following form:

2
Vu+h a_G+h a¢ h(1+ g)al a_V: 58_2,
Lax 29X oX “9x ot
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d.0 0.0T d.0
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Where
2 2 2
hl:l‘i‘ﬂ’ h2: b(ilz , hszﬁ, h4—pgcl, hs—pcl, hezb—l/j,
H Mo,y H M H o
2 2 2 2
h7 :il*z’ hs = COOCi , h9 = mTOl//v th pCll//’ h11 = mCl*z J
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We define displacement potentials R and Q which relate to displacement components U, and U; as,
JM QM X "
ox oy oy oX
e=v2|v|,(a—“—ﬂ)=v2Q. (14)
oy Ox
Using Eq. (13) in Egs. (9)-(12), we obtain:
0° ?, 0
(SlVZ—hs F)M—h4a—XQ+h2¢—h3(l+Voa)T :0, (15)
0 0°
h4§M +(V2—h5 F)on, (16)
~h,V’M +(V?*-h, —h 9 _h i)¢+h (L+v Q)T =0 (17)
6 778 5t 10 52 9 0 5t '
2 0 .94 FINCL
gzﬁsz —hll(l+nofoa)ﬁ+81v}r —(1+TOE E (18)
The components of the stress tensor are
ou, ov ou
0 xx =h12[8_xl+5]+26_x+h13¢_h147"1 (19)
ou, ov ov
Oy = 7712[8_)(1 +5] + 25_2 + P — el (20)
_.ou ov
Oyy —[54‘8—)(] (21)
2
Where (hy, ,h,,h,,S; )Z(i , bc*lz ) o 1+v,) , 1+h)).
H Ho 'y H

Normal Mode Analysis Method

The solution of the considered physical variable can be decomposed in terms of normal modes in the

following form

u.v,M,QpT o,lx.zt)=[uv, M,¢,T, o, J0expli(r +ex)] (22)

Where Cis the wave number in the x-direction, @ is the complex time constant, | :\/—71 and
[G, \7, M ,¢_, T_, OT.,] (v) These are the amplitudes of the field quantities.

Using (22)1’1 Eqs._(15)—(18), we_obtain

(D*-S,)M -S.Q+S,¢—-S.T =0, (23)
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S,M +(D*-S,)Q =0, (24)
—h,(D? —c?)R™ +(D? -S,)¢+S,T =0, (25)
S1(D* —¢*)M =S¢+ (D* =S,,)T = 0. (26)
Where,

~h,@®  h,ic h,  hy0+ive)

S.C
S.,5.,5,,S.,S.)=(= ,
(2 3 4 5 6) ( Sl Sl Sl Sl

, h,ic),

—&,(iw+n,7,0°)

(S;,S4,S,,Sy, )=(C2—h5a)2, Cz+h7—|—h8ia)—hma)2, hy (1+1vw),

),

51
h eC’+iw—r1,0° d
(Sll’slz):(£1 - ° ), D=—.
2 & dy

Eliminating Q_ , ;5 and 7 between Egs. (23) - (26), we get the following eighth ordinary differential equation
satisfied with M :
[D? —A,D® +A,D* —A,D? +A,IM (y) = 0. (27)
Where
A =S,+S;+S,+S,-hS,-S.S,,,
A, =5,S, +S,S,, +S,S,, +S,5, +S,S,, +S,5, +S,S, +5,S; —-hS,S,,
- h6S4C2 +S489810 - h684S7 - hesssn —SSSIOCZ _SSSBSlO _8587810,
A, =S5.5,S,, +5,5,5,, +5,5,S,, +5,5,5,, +S5,5,5,, +5,5,5; +S.,5,S,, +5.,5,5,
+h,S,S,.c° +S,5,5,,*-h,S,S.S,, —n,S,S,c*+5,5,5,S,, —h,S.S,,c*
—553851002 - h68587811 _5587510,C2 _858788810’
A, =5,5:5551, +5,5;505,; +55565451, +55565,5; —hGS4S781202 "'845789310C2
—h,S:S,5,,6% —S.S,S,S,,c°.

In a similar manner, we get

[D° -A,D° +A,D* —A,D* + A, {M (¥),Q (), @), T ()} = 0. (28)
Equation (28) can be factored as L _
[(D* —k/)(D* —k;)(D* ~k;)(D* =k )KM (¥).Q(2),.¢ \).T ()} = 0. (29)

Where knz(n =1,2,3,4) are the roots of the equation (28).
The solution of equation (28), which is bounded as Yy — oo, is given by:

M=>Re™, (30)
n=1
_ 4
Q=>L,Re™, (31)
n=1
_ 4
¢=> L,Re™ ", (32)
n=1
_ 4
T=>1L,Re™ (33)
n=1

Where, R (n =123 4) are constants.

n
To obtain the components of the displacement vector from (30) and (33) in (13)

u=>L,R.e™ (34)
n=1

_ 4

v=YLRe™, (35)
n=1

From Egs. (32)-(35) in (19)-(21) to obtain the components of the stresses
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_ 4
Cu= 2 LuRe ™, (36)
n=1
_ 4
ny = ZL7ane_kny ’ (37)
n=1
- 4
= D L, Re ™. (38)
n=1
Where,
L= Se | _—IhSoki-c?)+S (ki =S, -S;L,] | _ki=S, =Sl +S.L,
S (S [S.(k2—S,)+S,S,] Lo S, ’
L4n =ic _knLln, ? L5n = _(kn +iCLln)l

L6n = h12 (iCL4n o knLSn) + 2iCL4n + h13L2n - h14L3n’
L7n = hlZ (iCL4n - knL5n) _2knL5n + h13L2n a hl4L3n' L8n = (_kn L4n + iCLSn )

The Boundary Conditions of The Problem

We consider an inclined load P acting in the direction that makes an angle 6 with the direction of the x-axis:
oT i (ot i (t i (ot . i (at+ax)
=0, 0, =Re " =-(Pcostlp' "™ o, =R =—(Psino)e :

v 39)
= O,

2/

By inserting Eqgs. (32-33) and (36)-(38) into Eq. (39), we have
4 4 4 4
D L,R,=0,>L,R, =-Pcost, > LyR, =-Psind, > —k,L,R,=0. (40)
n=1 n=1 n=1 n=1
Solving the above system of equations (40), we obtain a system of four equations. After applying the inverse
matrix method, we have the values of the four constants. Hence, we obtain the expressions of displacements,

temperature distribution, and the stress components:
-1

R1 L31 L32 Laa L34 0

Rz _ L71 L72 L73 L74 -P C.OS 0 . (4 1)
R, Ly, L, Lg, L, —Psing

R4 _k1L21 _lezz _leza _k1L24 0

Numerical Results

In order to illustrate the obtained theoretical results in the preceding section, following Dhaliwal and Singh
in (1980), the magnesium material was chosen for purposes of numerical evaluations. The constants of the
problem were taken as

A=214x10" N /. m?, u=3278x10° N /m? K =17x10°W /mdeg, o, =1.78x10°N /m?,
p=1.74x10° Kg/.m® C_. =1.04x10° J / Kg deg,
T, =298K, f=268x10°N /m*deg, w; =3.58x10" /s.

The void parameters are

7 =1.753x10""m?, £ =1.475x10°N /m?, b =1.13849x10"°N /m?,
a=3.688x10°N, m =2x10°N /m?deg, w, = 0.0787 x10°N /m?s.

The comparisons were carried out for

x =051t=0Lc=-1 w=¢(+id, ¢ =-1 =-1,P=-096=60",

f =1,7,=1s, v=15s,0<y <6.

The above numerical technique was used for the distribution of the real parts of the

displacement components U and V , the temperature T , the stress components 0,, , ¢ w and o, and a

y
change in the volume fraction field ¢ with the distance y for the problem under consideration. in 2D for
three different theories of thermoelasticity (CD, L-S, and G-L). All the physical quantities are shown
graphically in Figures 1-6 in the case of two different values of the gravity effect (g =0, g =9.8) at 6 = 60".
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(Figure 1) illustrates the variation of the vertical displacement U under two scenarios: with and without
gravity. We notice that displacement U for case g =0 of the three theories begins fromnegative values, and
begins from positive values in the case of § =9.8 in the context of the three theories (CD), (L-S), and (G-L).
The values of the horizontal displacement U are decreasingin the range 0 <y <1 then increasingin the
range for g =0, and the values of the horizontal displacement U for g =9.8 start decreasing in the range
0<y <0.7, then increasing in the range 0.7 <y <6 for the three theories. (Figure 2) presents the

variation of the horizontal displacement vV as a function of the spatial or temporal variable, comparing two
different cases: the presence and the complete absence of gravity. The values of the distribution of the
vertical displacement V begins from positive values with gravity inthe context of the three theories, and

starts from in the range 0<y <1.3, are increasing and decreasing from the range 1.3<Yy <3, and
decreasing from the range and increasing from the range 3<Yy <6 from three theories. We notice that
theories of the values of the horizontal displacement V without gravity are large compared to the values of
V with gravity, for the three theories (Figure 3). The temperature distribution T is plotted for both the

presence and absence of gravity. The distribution of the temperature T is initiated with a non-negative value
that obeys the boundary conditions in the absence and presence of gravity for three theories. When a

gravitational field exists, T increases for 0 <y <0.8, and decreasing from 0.8<y <6 for three theories.
(Figure 4) displays the variation in the volume fraction field ¢ which starts at zero value with gravity, verifies
the boundary condition, and the volume fraction field ¢ always begin from positive values in the absence
of gravityin the three theories. The values of ¢ are increasing to a maximum value in the range 0 <Yy <0.5,
then decreasing in the range, and increasing from the range 1.7 <y <6 from three theories. (Figure 5)

clarifies the distribution of the normal stress 0, versus the distance y. It is clear that the gravity stress

component increases with the increase of 0, . The values of0,, begins from negative values (which is the
same point) for both the presence and absence of gravity in the context of the three theories. It is observed
that the distribution of the stress component 0, The gravity is greater than that without gravity. (Figure 6)

exhibits that the distribution of the stress component 0,, , begins from a negative value in the case of (g=0,
£=9.8) under the three theories, and satisfies the boundary conditions at Y =0.
Similarly, the distributions of the real parts of the above physical quantities with distance Y In 2D, for three

theories with inclined effect are shown graphically in Figures 7-11 in the case of different values of angle (¢

= 15°, 45°) at g=9.8. Figure 7 explains the distribution of the displacement components V in the case of (£
= 15, 45°) and in the context of (CD), (L-S), and (G-L). The distribution of V is increasing with the increase

of 6. (Figure 8) investigated the variation of the temperature distribution T , with distance Y . It is observed
that the distribution of T increases with the increase of # under the three theories for y > 0. (Figure 9)
depicts the distribution of the change in the volume fraction field ¢ increases with the increase of . (Figure

10) demonstrates that the distribution of ¢ 0,, in the case of (0= 15, 45°) increases with the increase of 6.
(Figure 11) depicts the distribution of the distribution of stress component 0, under the three theories,

begins from a positive value in the case of (f= 15°, 45°), and satisfies the boundary conditions at ¥ =0.
3D variations represent the complete relations between the displacement components U,V , also stress

y 10y » and both components of distance as shown in Figures 12-15, in the presence of the

gravity field g=9.8 at 45in the context of (G-L) theory. These figures are very important to study the
dependence of these physical quantities on the two displacement components. The curves obtained are
highly dependent on the distance from the origin; all the physical quantities are moving in wave propagation.

components O
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Fig.4 Change in volume fraction field distribution in the presence and complete absence of gravity
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Fig.5. Variation of the force stress components 0, in the presence and complete absence of
gravity

0.4 T T T
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r
1 2 3 4 5 6
y

o
N
o

Fig. 6 Variation of the force stress components 0, , in the presence and complete absence of
gravity

0.5 T T T T

v in the different values of 0

Fig. 8. Temperature distribution Tin the different values of ¢
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Fig. 11. The distribution of stress componentso,, in the different values of ¢
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Fig. 12. 3D variation of the displacement u with the variation of x, y under (G-L) theory
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Fig. 15. 3D variation of the street 0,, with the variation of x, y under (G-L) theory

Conclusion

The paper emphasized studying how the influence of thermal memory varies while considering the three
theories. The application of normal model analysis leads to the development and utilization of analytical
solutions for the thermoelastic problem in solids. The values of all the physical quantities converge to O by
increasing the distance y and all the functions are continuous. The gravity field and the inclined load play
a significant role in the distribution of all the physical quantities.
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