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Abstract  
A model of the equations of two-dimensional problems is studied in a half space, with Porous material 
under the effect of gravity and an inclined load in the context of the three theories of Lord–Shulman, 
Green-Lindsay, and classical-coupled. The inclined load is assumed to be a linear combination of a 
normal mode and a tangential load. The formulation is performed in the context of the Lord-Shulman 
and Green-Lindsay theories, as well as the classical dynamical coupled theory. Comparisons are 
made with the results in different values of the angle of inclination, as well as the absence and 

presence of gravity. 
Keywords. Porous Material, Gravity, Inclined load, Lord-Shulman Theory, Green-Lindsay Theory, 
Normal Mode Analysis. 

 

Introduction 

Double-porosity materials, characterized by two well-defined networks of interconnected voids or pores, have 

attracted significant interest in material science, engineering, and geophysics. These materials possess high 

permeability and lightweight properties, along with enhanced mechanical performance, making them well-

suited for various applications, including energy storage systems, geotechnical engineering, biomedical 

devices, and advanced composite structures. The coexistence of macroporosity and micro-porosity presents 
both challenges and opportunities, particularly in understanding their mechanical and thermal behavior 

within the context of thermoelasticity.  

Thermoelasticity theories, which admit a finite speed for thermal signals, have garnered considerable 

attention over the past four decades. In contrast to the conventional coupled thermoelasticity theory based 

on a parabolic heat equation,Biot [1], which predicts an infinite speed for the propagation of heat, these 
theories involve a hyperbolic heat equation. They are referred to as generalized thermoelasticity theories. 

Two generalizations to the coupled theory were introduced. The first is ascribed to Lord and Shulman [2] 

who introduced the theory of generalized thermoelasticity with one relaxation time by postulating a new law 

of heat conduction to replace the classical Fourier's law. Othman [3] constructed the model of generalized 

thermoelasticity in an isotropic elastic medium under the dependence of the modulus of elasticity on the 

reference temperature with one relaxation time. 
The second generalization to the coupled theory of thermoelasticity is what is known as the theory of 

thermoelasticity with two relaxation times, or the theory of temperature rate-dependent thermoelasticity, 

and was proposed by Green and Lindsay [4]. It is based on a form of the entropy inequality proposed by 

Green and Laws [5]. 

The classical theory of elasticity generally disregarded the influence of gravity. Bromwich [6] was the first to 
explore the impact of gravity on wave propagation in an elastic solid medium. Abo-Dahab et al. [7] examined 

the Effect of gravity on piezo-thermoelasticity within the dual-phase-lag model. Said et al. [8] have studied 

the Effect of temperature-dependent properties and gravity on a nonlocal poro-thermoelastic medium with 

MDD via the G-L Model. Abd Allaand Ahmed [9] investigated the Stoneley and Rayleigh waves in a non-

homogeneous orthotropic elastic medium under the influence of gravity. Said and Othman [10] have 

investigated the 2D problem of a nonlocal thermoelastic diffusion solid with gravity via three theories. 
Othman et al. [11] studied the Influence of gravity and hall current on a two-temperature fiber-reinforced 

magneto-visco-thermo-elastic medium using a modified Green-Lindsay model. Kalkal et al. [12] have 

investigated the Three-phase-lag functionally graded thermoelastic model having double porosity and 

gravitational effect. Amnah et al. [13] have investigated the effect of gravity on a magneto-thermoelastic 

porous medium with the framework of a memory-dependent derivative in the context of the 3PHL model. 

Said [14] studied A viscoelastic-micropolar solid with voids and micro-temperatures under the effect of the 
gravity field. 

The effect of an inclined load on a functionally graded, temperature-dependent thermoelastic material was 

analyzed by Barak Dhankhar [15]. To examine the thermally insulated stress-free surface of a thermoelastic 

solid half-space as a result of an inclined load. Othman et al. [16] discussed the effect of gravity and inclined 

load in a micropolar-thermoelastic medium possessing cubic symmetry under G-N theory. Said. [17] studied 
the impact of rotation and inclined load on a nonlocal fiber-reinforced thermoelastic half-space via a simple-

phase-lag model .  Said et al. [18] studied the Effect of an inclined load on a nonlocal fiber-reinforced visco-

thermoelastic solid via a dual-phase-lag model. Othman et al. [19], and Sheok et al. [20] on the effects of 

inclined load on different thermoelastic media. Deswal et al. [21] discussed disturbances in an initially 

stressed fiber-reinforced orthotropic thermoelastic medium due to an inclined load. A transversely isotropic 
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magneto-thermoelastic solid with two temperatures and no energy loss from an inclined load was examined 

by Lata and Kaur [22]. Alharbi [23] introduced two temperature theories on a micropolar thermoelastic 

medium with voids under the effect of an inclined load via a three-phase-lag model. In the present work, we 

shall formulate the generalized thermoelastic medium with a Gravitational Field for three theories with 
Porous material and inclined load, and solve for the temperature, stress components, and displacement 

components. The normal method is used to obtain the exact expression for the considered variables. A 

comparison is carried out between the considered variables as calculated from the generalized 

thermoelasticity based on L–S, G–L, and coupled theories in the absence and presence of gravity. A 

comparison is also made between the three theories with different values of the angle of inclination. 
 

Formulation Of the Problem and Basic Equations 

We consider a homogeneous isotropic elastic body with voids in a half-space 0y  under the effect of a 

constant gravitational field of acceleration g. Plane strain in the xy -plane with the displacement vector 

( , ,0 )u v  such that ( , , ),x y tu u= ( , , ).x y tv v=  Suppose that an inclined line load 0f  per unit length is acting 

on the z-axis, and its inclination to the x-axis is .  

The basic governing equations of a linear thermoelastic medium with voids under the effect of gravity, based 

on (L-S), (G-L), and coupled theories, are 

The stress-strain relation is written as:   

ij kk ij ijσ λe +b 1+ T δ μ e ,
t

  − +=[ ( ) ]
∂

∂
                                                     (1) 

, ,

1
( ) ,

2
ij i j j ie u +u=                                                                                            (2) 

The dynamical equations of an elastic medium are given by 
2
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The equation of voids is 
2

2

0 0(1 ) ,
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b e b m v T ρ
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The heat conduction equation, 

2

0 0 0 0 0 0 0(1+ ) + (1+ ) (1+ )EK T ρC T T n e n
t t t

     = + .
∂ ∂ ∂

∂ ∂ ∂
m T                       (6)  

Where ijσ are the components of the stress tensor, ije are the components of strain, ,   are the lame, 

constants, (3 2 ) t   = +  such that t is the coefficient of thermal expansion, ij is the Kronecker delta,

, , .i j x y= 0, , , , ,b m     are the material constants due to the presence of voids?   is the density, EC is 

the specific heat at constant strain, 1 0,n n   are parameters, 0 0, v   are the thermal relaxation times, K  is 

the thermal conductivity, 0T The reference temperature is chosen so that  0 0( ) / 1,T T T−    is the change 

in the volume fraction field.  

For a two-dimensional problem in the xy-plane, Eq. (1) can be written as: 

0[ ( ) (1 ) ] ( ), . 1,2.ij ij

u v
b v i j

x x
      = + + − + + + =
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Consider the following non-dimensional variables: 
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Using the above non-dimensional variables defined in Eq. (8), the above governing equations take the 

following form: 
2

2

1 2 3 0 4+ (1+ ) ,5 2
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u h h h v h h

x x t x x t
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−
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We define displacement potentials R  and Q which relate to displacement components 1u and 3u as, 

,
M Q

u
x y

 
= +

 
,
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v

y x
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                                                                   (13) 
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Using Eq. (13) in Eqs. (9)-(12), we obtain: 
2
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The components of the stress tensor are 

1

12 13 142 ,xx
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Normal Mode Analysis Method 

The solution of the considered physical variable can be decomposed in terms of normal modes in the 

following form 

[ ,  M Q, , , ]( ) = [u ](y)exp[i( + )]ij ij
u , v , T σ x, z,t , v ,  M , , T , ωt cx                  (22)       

Where c is the wave number in the x-direction,   is the complex time constant, 1i = −  and 

[u ]
ij

, v ,  M , , T ,  (y) These are the amplitudes of the field quantities. 

Using (22) in Eqs. (15)-(18), we obtain  
2

2 3 5(D ) Q + 0,4S M S TS S =− −−                                                                       (23) 
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2

6 7+ (D ) 0,S M S Q =−                                                                                        (24) 

2 2 * 2

6 8(D ) + (D ) + 0,9h c R S S T =− − −                                                                  (25) 
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10 11 12(D ) + (D ) 0.S c M S S T =− − −                                                                 (26) 

Where, 
2 2

1 5 34 2

2 3 4 5 6 4

1 1 1 1

(1 )
( , , , , ) ( , , , , ),

S c h h ih ic h
S S S S S h ic

S S S S

 − +
=  

2

2 2 2 2 2 0 0

7 8 9 10 5 7 8 10 9

1

( )
( , , , ) ( , , (1 ), ),

i n
S S S S c h c h h i h h i

   
   



− +
= − + + − +

2 2

1 011

11 12

1 1

d
( , ) ( , ), D .

d

c ih
S S

y

   

 

+ −
= =  

Eliminating  ,Q   and  
*  between Eqs. (23) - (26), we get the following eighth ordinary differential equation 

satisfied with  M :  
8 6 4 2

3 4[D D + D D + ] (y) = 0.1 2A A A A M− −                                                             (27) 
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In a similar manner, we get  
8 6 4 2

3 4[D D + D D + ]{ (y), (y), (z), (y)} = 0.1 2A A A A M Q T− −                                  (28) 

Equation (28) can be factored as 
2 2 2 2 2 2 2 2 *

1 2 3 4[(D )(D )(D )(D )]{ (y), (z), (y), (y)} = 0.k k k k M Q T− − − −          (29) 

Where
2 ( 1, 2,3, 4)nk n =  are the roots of the equation (28). 

The solution of equation (28), which is bounded as ,y →  is given by: 
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Where, ( 1,2,3,4)R n =n are constants. 

To obtain the components of the displacement vector from (30) and (33) in (13) 
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From Eqs. (32)-(35) in (19)-(21) to obtain the components of the stresses 
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The Boundary Conditions of The Problem 

We consider an inclined load P acting in the direction that makes an angle θ with the direction of the x-axis: 

( )( ) ( ) ( )

1 2,  
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By inserting Eqs. (32-33) and (36)-(38) into Eq. (39), we have  
4
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Solving the above system of equations (40), we obtain a system of four equations. After applying the inverse 

matrix method, we have the values of the four constants. Hence, we obtain the expressions of displacements, 
temperature distribution, and the stress components: 

1
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                                             (41) 

 

Numerical Results
 

In order to illustrate the obtained theoretical results in the preceding section, following Dhaliwal and Singh 

in (1980), the magnesium material was chosen for purposes of numerical evaluations. The constants of the 

problem were taken as 
10 22.14 10 /. ,N m =  10 23.278 10 / ,N m =  21.7 10 / deg,K W m=  5 21.78 10 / ,t N m −= 

3 31.74 10 /. ,Kg m =  31.04 10 / deg,EC J Kg= 
 

0 298 ,T K= 6 22.68 10 / deg,N m =  * 11

1 3.58 10 / .s =   

The void parameters are  
15 21.753 10 ,m −= 

10 21.475 10 / ,N m =  10 21.13849 10 / ,b N m=   

53.688 10 ,N −= 
6 22 10 / deg,m N m=  3 2

0 0.0787 10 / .N m s −=   

The comparisons were carried out for  

0.5,x = 0.1,t = 1,c = −
0 1 0 1i , 1, 1,    = + = − = − 0.9P = − 60 , =  

1,f =
0 1 , 1.5 ,s s = = 0 6.y   

The above numerical technique was used for the distribution of the real parts of the 

displacement components u  and v , the temperature T , the stress components xxσ , yyσ  and xyσ and a 

change in the volume fraction field     with the distance y  for the problem under consideration. in 2D for 

three different theories of thermoelasticity (CD, L-S, and G-L). All the physical quantities are shown 

graphically in Figures 1-6 in the case of two different values of the gravity effect ( 0,g = 9.8)g =  at 60 . =  
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(Figure 1) illustrates the variation of the vertical displacement u  under two scenarios: with and without 

gravity. We notice that displacement u  for case 0g =  of the three theories begins fromnegative values, and 

begins from positive values in the case of
 

9.8g =  in the context of the three theories (CD), (L-S), and (G-L). 

The values of the horizontal displacement u  are decreasingin the range 0 1,y  then increasingin the 

range for 0,g = and the values of the horizontal displacement u  for 9.8g =  
start decreasing in the range

, then increasing in the range 0.7 6y   for the three theories. (Figure 2) presents the 

variation of the horizontal displacement v as a function of the spatial or temporal variable, comparing two 

different cases: the presence and the complete absence of gravity. The values of the distribution of the 

vertical displacement v begins from positive values with gravity inthe context of the three theories, and 

starts from in the range 0 1.3,y  are increasing and decreasing from the range 1.3 3y ,  and 

decreasing from the range and increasing from the range 3 6y  from three theories. We notice that 

theories of the values of the horizontal displacement v  without gravity are large compared to the values of 

v  with gravity, for the three theories (Figure 3). The temperature distribution T  is plotted for both the 

presence and absence of gravity. The distribution of the temperature T is initiated with a non-negative value 
that obeys the boundary conditions in the absence and presence of gravity for three theories. When a 

gravitational field exists, T increases for 0 0.8y ,   and decreasing from
 
0.8 6y   for three theories.

     

(
Figure 4) displays the variation in the volume fraction field   which starts at zero value with gravity, verifies 

the boundary condition, and the volume fraction field   always begin from positive values in the absence 

of gravityin the three theories. The values of
 
  are increasing to a maximum value in the range 0 0.5y , 

then decreasing in the range, and increasing from the range 1.7 6y   from three theories. (Figure 5) 

clarifies the distribution of the normal stress yy  versus the distance y. It is clear that the gravity stress 

component increases with the increase of yy . The values of yy begins from negative values (which is the 

same point) for both the presence and absence of gravity in the context of the three theories. It is observed 

that the distribution of the stress component yy The gravity is greater than that without gravity. (Figure 6) 

exhibits that the distribution of the stress component xy , begins from a negative value in the case of (g=0, 

g=9.8) under the three theories, and satisfies the boundary conditions at 0y = . 

Similarly, the distributions of the real parts of the above physical quantities with distance y In 2D, for three 

theories with inclined effect are shown graphically in Figures 7-11 in the case of different values of angle (
= 15◦, 45◦) at g=9.8. Figure 7 explains the distribution of the displacement components v  in the case of (
= 15◦, 45◦) and in the context of (CD), (L-S), and (G-L). The distribution of v  is increasing with the increase 

of  . (Figure 8) investigated the variation of the temperature distribution T , with distance y . It is observed 

that the distribution of T  increases with the increase of   under the three theories for > 0y . (Figure 9) 

depicts the distribution of the change in the volume fraction field   increases with the increase of  . (Figure 

10) demonstrates that the distribution of c yy  in the case of ( = 15◦, 45◦) increases with the increase of  . 

(Figure 11) depicts the distribution of the distribution of stress component xy  under the three theories, 

begins from a positive value in the case of  ( = 15◦, 45◦), and satisfies the boundary conditions at 0y = . 

3D variations represent the complete relations between the displacement components ,u v , also stress 

components ,yy xy  , and both components of distance as shown in Figures 12-15, in the presence of the 

gravity field g=9.8 at 45◦in the context of (G-L) theory. These figures are very important to study the 

dependence of these physical quantities on the two displacement components. The curves obtained are 

highly dependent on the distance from the origin; all the physical quantities are moving in wave propagation. 
 

0 0.7y 
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Fig 1. Variation of the horizontal displacement u he presence and complete absence of gravity 

 
Fig 2. Variation of the horizontal displacement with the presence and complete absence of gravity 

 
Fig. 3 variation of the temperature Tin the presence and complete absence of gravity 

 
Fig.4 Change in volume fraction field distribution in the presence and complete absence of gravity 
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Fig.5. Variation of the force stress components  yy  in the presence and complete absence of 

gravity 

 

Fig. 6 Variation of the force stress components  xy  in the presence and complete absence of 

gravity 

 
Fig. 7. Vertical displacement distribution v in the different values of   

 

 
Fig. 8. Temperature distribution Tin the different values of   
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Fig.9. Distribution of the temperature function   in the different values of   

 

Fig. 10. The distribution of the stress component yy in the different values of   

 

Fig. 11. The distribution of stress components xy in the different values of 

 
Fig. 12. 3D variation of the displacement u with the variation of x, y under (G-L) theory 
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Fig. 13. 3D variation of the displacement v with the variation of x, y under (G-L) theory 

 

Fig. 14. 3D variation of the street yy   with the variation of x, y under (G-L) theory

 

Fig. 15. 3D variation of the street xy  with the variation of x, y under (G-L) theory 

 

Conclusion 
The paper emphasized studying how the influence of thermal memory varies while considering the three 

theories. The application of normal model analysis leads to the development and utilization of analytical 

solutions for the thermoelastic problem in solids. The values of all the physical quantities converge to 0 by 
increasing the distance y and all the functions are continuous. The gravity field and the inclined load play 

a significant role in the distribution of all the physical quantities. 
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