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Abstract 

Malaria remains one of the most life-threatening infectious diseases worldwide, causing hundreds 

of thousands of deaths annually, particularly among children and pregnant women in tropical and 

subtropical regions. To better understand its complex transmission dynamics, this study develops 

and analyzes both deterministic and stochastic mathematical models of malaria based on systems 

of differential equations. The main objective of this research is to study the stability of both the 
deterministic and stochastic malaria models analytically and numerically using the Lyapunov 

function, the Euler method, and the Euler–Maruyama method. For the deterministic model, the 

disease-free and endemic equilibrium points are derived, and their local and global stability are 

investigated. Numerical simulations are conducted using the mentioned numerical methods to 

demonstrate the dynamic behavior of the system. The stochastic extension of the model 
incorporates random perturbations to represent environmental and demographic fluctuations that 

influence disease spread. The analytical and numerical results reveal that stochastic effects 

significantly influence malaria dynamics, potentially reducing disease persistence and stabilizing 

the system under certain conditions. These findings provide deeper insights into malaria 

transmission mechanisms and contribute to the development of more effective and evidence-based 

control strategies. 
Keywords. Malaria Transmission Model, Deterministic Model, Lyapunov Function, Stochastic 

Model.  

 

Introduction 

Malaria presents a significant global public health challenge, responsible for hundreds of thousands of 
deaths annually. It is particularly noted that young children are most at risk, accounting for the majority of 

these fatalities. Studies indicate that acquired immunity to the disease develops with repeated exposure to 

parasites, making it a crucial factor influencing disease transmission dynamics. Therefore, it is essential to 

develop precise mathematical models to analyze these dynamics and understand the complex interplay 

between levels of disease exposure, the mechanism of immunity acquisition, and the infection pathway [1]. 

Furthermore, malaria is a parasitic infection that is transmitted to humans by the bite of specific mosquito 
species known as anophelines. The parasite must spend a portion of its existence in the mosquito, rather 

than simply moving from one person to another.  

Because the parasite's growth and development take almost as long as the insect's typical lifespan, life 

within the mosquito is a race against time. In colder climates, this time frame is longer; as the temperature 

increases, it gets shorter. Therefore, the parasite's existence is precarious, and the mosquito usually dies 
before it can spread malaria once the average temperature falls below a particular threshold. This explains 

why malaria poses such a serious risk to health in tropical and subtropical areas [2]. In many regions of the 

world, malaria is endemic, but it is most prevalent in sub-Saharan Africa. The World Health Organization 

(WHO) estimates that 229 million cases of malaria occurred globally in 2019, resulting in about 409,000 

fatalities. A startling 94% of all instances and fatalities occurred in Africa, with pregnant women and children 

under five being the most susceptible groups [3]. 
Mathematical models play a crucial role in the study of malaria transmission dynamics, having been utilized 

for several decades to provide a comprehensive framework for understanding the factors influencing the 

spread of this disease. Initial efforts in this area employed simple models based on ordinary differential 

equations, which helped elucidate changes in the densities of infected humans and mosquitoes. As research 

has progressed, these models have evolved to incorporate greater complexities, such as the latent periods 

during which individuals are infected but asymptomatic, as well as the impact of vector density and the age 
structure of populations. Additionally, other factors such as migration, social and economic changes, and 

climatic influences have been integrated, thereby enhancing the accuracy of the modeling. These models 

highlight the intricacies present in the interactions among hosts, vectors, and parasites, underscoring the 

need for models that account for environmental and social diversity.  

Through this comprehensive approach, mathematical models can provide valuable insights into the potential 
risks of malaria transmission, facilitating the development of effective strategies for disease control [4]. 
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Among these, deterministic models serve as a pivotal analytical tool in the study of complex biological 

systems, offering a systematic framework for understanding the interactions and dynamics of infectious 
diseases. By employing systems of differential equations, these models enable the precise modeling of 

disease transmission pathways and the identification of influential factors on its spread. The fundamental 

role of deterministic models lies in their ability to isolate different variables and assess their impact 

independently, which facilitates sensitivity analyses to pinpoint the most critical parameters in controlling 

disease dynamics. Furthermore, these models provide quantifiable insights that can effectively guide the 
formulation of intervention and prevention strategies, making them an indispensable tool in the field of 

mathematical epidemiology [5]. 

However, stochastic modeling holds paramount importance in epidemiology, offering an analytical 

framework that surpasses the limitations of traditional deterministic models, particularly when studying 

epidemics in small populations. While deterministic models presuppose a single, predictable trajectory for 

disease progression, stochastic models inherently incorporate an element of randomness. This inherent 
stochasticity, whether demographic (e.g., variations in transmission or recovery rates at the individual level) 

or environmental (e.g., changes in external factors), is fundamental to shaping epidemic dynamics. 

Consequently, these models allow for the estimation of the probability of events (such as an outbreak) rather 

than merely predicting their definitive occurrence. Their ability to capture the cumulative effect of small 

random events makes them an indispensable tool for forecasting the trajectories of diseases influenced by 
individual or environmental variability, thereby enhancing the accuracy of predictions and providing a more 

comprehensive view of complex epidemiological phenomena [6].  

A basic mathematical framework for examining the stability of dynamical systems is provided by the use of 

Lyapunov functions. This approach becomes particularly significant when applied to mathematical models 

of infectious diseases, as it enables the assessment of their long-term behaviors and the stability of their 

equilibrium states [7]. In the context of analyzing epidemiological models, the Lyapunov function represents 
a core mathematical tool for verifying the stability of systems and the accuracy of mathematical models. One 

recent study utilized a stochastic Lyapunov functional analysis to evaluate a fractional model describing the 

co-dynamics of both malaria and COVID-19. The study's results showed that this approach not only proves 

the global stability of the system but also confirms the existence of a unique solution, which enhances the 

model's reliability and provides a solid foundation for its use in biological and epidemiological applications 
[8]. 

Building on this, the current study aims to use Lyapunov functions to analyze the stability of a stochastic 

differential equations model for malaria transmission. Furthermore, the study seeks to apply numerical 

methods such as Euler method and Euler–Maruyama method to simulate the model and obtain accurate 

approximate solutions, thereby providing new insights into disease dynamics and contributing to the 

development of more effective and evidence-based control strategies [8]. 
The remainder of this paper is organized as follows: Section 2 presents the formulation of the malaria 

transmission model. Section 3 discusses the disease-free and endemic equilibria and derives the basic 

reproduction number, and analyzes stability using the Lyapunov function and Euler method. Section 4 

analyzes the stochastic version of the model and its stability using Lyapunov functions. Section 5 provides 

numerical simulations based on the Euler–Maruyama method, and Section 6 concludes with the main 
findings and implications. Based on the above discussion, the next section introduces the mathematical 

formulation of the malaria transmission model that forms the foundation of our analysis. 

 

Model formulation  
To analyze the dynamics of malaria spread and understand the impact of different parameters on the disease 

outbreak, a mathematical model based on differential equations was developed. This model allows studying 
changes in the number of infected and susceptible individuals over time.  

In this section, the stability of the system will be studied by calculating the basic reproduction number 𝑅0 
and using the Lyapunov function and numerical analysis to evaluate the effect of different parameters on 
the spread of the disease. 

Here we apply the SEIR-SEI of Malaria. The model is formulated for both the human population as well as 

mosquito population at time 𝑡, For humans, we divide our population into four classes: Susceptible 𝑆𝐻, 

Exposed 𝐸𝐻, Infectious 𝐼𝐻, and Recovery Human 𝑅𝐻. And the population of the mosquitoes is divided into 

three classes, namely Susceptible 𝑆𝑉, Exposed 𝐸𝑉, and Infectious 𝐼𝑉. 

The following model shows the path of infection between humans and mosquitoes. 
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{
 
 
 
 
 

 
 
 
 
 
𝑑𝑆𝐻

𝑑𝑡
= Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      

𝑑𝐸𝐻

𝑑𝑡
= 𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻              

𝑑𝐼𝐻

𝑑𝑡
= 𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻

𝑑𝑅𝐻

𝑑𝑡
= 𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻                      

𝑑𝑆𝑉

𝑑𝑡
= Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉                    

𝑑𝐸𝑉

𝑑𝑡
= 𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉                 

𝑑𝐼𝑉

𝑑𝑡
= 𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉                                    

.                                                                                 (1) 

 

Table 1. List of the parameters. [9]. 

Parameter  Description 

Λ𝐻. Recruitment rate of humans. 

Λ𝑉. Recruitment rate of mosquitoes. 

𝛿. Induce the death rate of humans. 

𝜌. Loss of immunity for humans. 

𝜓. The rate of newborns' birth with infection humans. 

𝛼1. The developing rate of exposed (humans) becoming infectious. 

𝛼2. Recovery rate of humans (removal rate). 

𝛼3. The developing rate of exposed mosquitoes becoming infectious. 

𝜇𝐻. Natural death rate of humans. 

𝜇𝑉. Natural death rate of mosquitoes. 

𝑞𝐻. 
Probability of transmission of infection from an infectious mosquito 

to a susceptible human. 

𝑞𝑉. 
Probability of transmission of infection from an infectious human to 

a susceptible mosquito. 

𝜂𝑉. Mosquitoes biting rate. 

𝛽𝐻. Infection rate 𝑞𝐻 × 𝜂𝑉 of humans. 

𝛽𝑉. Infection rate 𝑞𝑉 × 𝜂𝑉 mosquitoes. 

 

Where: 𝑆𝐻(𝑡) = 𝑆𝐻(0), 𝐸𝐻(𝑡) = 𝐸𝐻(0), 𝐼𝐻(𝑡) = 𝐼𝐻(0), 𝑅𝐻(𝑡) = 𝑅𝐻(0), 𝑆𝑉(𝑡) = 𝑆𝑉(0), 𝐸𝑉(𝑡) = 𝐸𝑉(0), 𝐼𝑉(𝑡) = 𝐼𝑉(0). 
Since all model parameters represent biologically meaningful rates such as infection weight equations, 

progress equations in recovery rates, natural death rates, and death rates resulting from disease, all of these 
parameters are positive. 

 

Model analysis 

Disease-Free Equilibrium (DFE): 
 If  𝐼𝐻 = 𝐸𝐻 = 𝑅𝐻 = 𝐼𝑉 = 𝐸𝑉 = 0.  

Then  Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 = 0 ⟹ Λ𝐻 − 𝜇𝐻𝑆𝐻 = 0 ⟹ 𝑆𝐻
0 =

Λ𝐻

𝜇𝐻
,  

And  Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉 = 0 ⟹ Λ𝑉 − 𝜇𝑉𝑆𝑉 = 0 ⟹ 𝑆𝑉
0 =

Λ𝑉

𝜇𝑉
. 

Hence, the DFE is {𝑆𝐻
0 , 𝐸𝐻

0 , 𝐼𝐻
0 , 𝑅𝐻

0 , 𝑆𝑉
0, 𝐸𝑉

0, 𝐼𝑉
0} =  (

Λ𝐻

𝜇𝐻
, 0,0,0,

Λ𝑉

𝜇𝑉
, 0,0). 

After determining the disease-free point, we now move on to calculating the basic reproduction number R0, 
which is used to analyze the stability of this point. 
 

Basic Reproduction Number 𝑹𝟎.  
To calculate 𝑅0 using the next generation matrix methodology, we first divide the variables into infectious 

and non-infectious categories as follows: 

Let X be the vector of infectious cases and Y be the vector of non-infectious cases, such that:  

𝑋 = (𝐸𝐻 , 𝐼𝐻 , 𝐸𝑉 , 𝐼𝑉)
𝑇 , 𝑌 = (𝑆𝐻 , 𝑅𝐻 , 𝑆𝑉)

𝑇. 

𝐹(𝑋) = (

𝛽𝐻𝑆𝐻𝐼𝐻
0

𝛽𝑉𝑆𝑉𝐼𝑉
0

) ,𝑀(𝑋) = (

−(𝛼1 + 𝜇𝐻)𝐸𝐻
(𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻−𝛼1𝐸𝐻 − 𝜓𝐼𝐻

−(𝛼3 + 𝜇𝑉)𝐸𝑉
𝜇𝑉𝐼𝑉−𝛼3𝐸𝑉

). 

The vector 𝐹(𝑋) represents the rates of new infections, while 𝑀(𝑋) describes the rates of transmission. 
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𝐽(𝐹(𝑋))  =  

(

 
 
 
 

𝜕𝐹1

𝜕𝐸𝐻

𝜕𝐹1

𝜕𝐼𝐻

𝜕𝐹1

𝜕𝐸𝑉

𝜕𝐹1

𝜕𝐼𝑉

𝜕𝐹2

𝜕𝐸𝐻

𝜕𝐹2

𝜕𝐼𝐻

𝜕𝐹2

𝜕𝐸𝑉

𝜕𝐹2

𝜕𝐼𝑉

𝜕𝐹3

𝜕𝐸𝐻
𝜕𝐹4

𝜕𝐸𝐻

𝜕𝐹3

𝜕𝐼𝐻
𝜕𝐹4

𝜕𝐼𝐻

𝜕𝐹3

𝜕𝐸𝑉
𝜕𝐹4

𝜕𝐸𝑉

𝜕𝐹3

𝜕𝐼𝑉
𝜕𝐹4

𝜕𝐼𝑉)

 
 
 
 

, 𝑎𝑛𝑑  𝐽(𝑀(𝑋))  =  

(

 
 
 
 

𝜕𝑉1

𝜕𝐸𝐻

𝜕𝑉1

𝜕𝐼𝐻

𝜕𝑉1

𝜕𝐸𝑉

𝜕𝑉1

𝜕𝐼𝑉

𝜕𝑉2

𝜕𝐸𝐻

𝜕𝑉2

𝜕𝐼𝐻

𝜕𝑉2

𝜕𝐸𝑉

𝜕𝑉2

𝜕𝐼𝑉

𝜕𝑉3

𝜕𝐸𝐻
𝜕𝑉4

𝜕𝐸𝐻

𝜕𝑉3

𝜕𝐼𝐻
𝜕𝑉4

𝜕𝐼𝐻

𝜕𝑉3

𝜕𝐸𝑉
𝜕𝑉4

𝜕𝐸𝑉

𝜕𝑉3

𝜕𝐼𝑉
𝜕𝑉4

𝜕𝐼𝑉)

 
 
 
 

. 

By taking the partial derivatives of the vectors 𝐹(𝑋) and 𝑀(𝑋) with respect to the contagious variables, we 

obtain two Jacobian matrices 𝐽(𝐹(𝑋)) 𝑎𝑛𝑑 𝐽(𝑀(𝑋)): 

Then  𝐽(𝐹(𝑋))  =  (

0 𝛽𝐻𝑆𝐻 0 0
0 0 0 0
0
0

0
0

0
0

𝛽𝑉𝑆𝑉
0

),                                    

 

and  𝐽(𝑀(𝑋))  =  (

(𝛼1 + 𝜇𝐻) 0 0 0
−𝛼1 (𝛼2 + 𝜇𝐻 + 𝛿) − 𝜓 0 0

0
0

0
0

(𝛼3 + 𝜇𝑉)
−𝛼3

0
𝜇𝑉

). 

𝐽(𝐹(𝐷𝐹𝐸))  =  

(

 
 

0
𝛽𝐻Λ𝐻

𝜇𝐻
0 0

0 0 0 0

0
0

0
0

0
0

𝛽𝑉Λ𝑉

𝜇𝑉

0 )

 
 

. 

and  𝐽(𝑀(𝐷𝐹𝐸))  =  (

(𝛼1 + 𝜇𝐻) 0 0 0
−𝛼1 (𝛼2 + 𝜇𝐻 + 𝛿) − 𝜓 0 0

0
0

0
0

(𝛼3 + 𝜇𝑉)
−𝛼3

0
𝜇𝑉

). 

From the Jacobian matrix of 𝑀(𝑋) at the disease-free state (DFE), we note that the matrix takes a (block-

diagonal) form, separating the dynamics of humans from the dynamics of mosquitoes (𝐸𝑉 , 𝐼𝑉). Since there 

are no connecting elements between the two masses, we can easily calculate the inverse of 𝑀 by inverting 

each mass separately.[10] 

𝐽(𝑀(𝐷𝐹𝐸)) = 𝑀 = (
𝑀𝐻 0
0 𝑀𝑉

) ⟹ 𝑀−1 = (
𝑀𝐻
−1 0

0 𝑀𝑉
−1). 

𝑀𝐻 = (
(𝛼1 + 𝜇𝐻) 0

−𝛼1 (𝛼2 + 𝜇𝐻 + 𝛿) − 𝜓
)  and 𝑀𝑉 = (

(𝛼3 + 𝜇𝑉) 0
−𝛼3 𝜇𝑉

). 

𝑀𝐻
−1 =

1

det (𝑉𝐻)
𝑎𝑑𝑗 (𝑉𝐻). 

=
1

(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
(
(𝛼2 + 𝜇𝐻 + 𝛿 − 𝜓) 0

𝛼1 (𝛼1 + 𝜇𝐻)
). 

𝑀𝐻
−1 = (

1

(𝛼1+𝜇𝐻)
0

𝛼1

(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)

1

(𝛼2+𝜇𝐻+𝛿−𝜓)

). 

𝑀𝑉
−1 =

1

det (𝑉𝑉)
𝑎𝑑𝑗 (𝑉𝑉). 

=
1

(𝛼3+𝜇𝑉)𝜇𝑉
(
𝜇𝑉 0

𝛼3 (𝛼3 + 𝜇𝑉)
). 

𝑀𝐻
−1 = (

1

(𝛼3+𝜇𝑉)
0

𝛼3

(𝛼3+𝜇𝑉)𝜇𝑉

1

𝜇𝑉

). 

∴ 𝑀−1 =

(

 
 
 
 

1

(𝛼1+𝜇𝐻)
0 0 0

𝛼1

(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)

1

(𝛼2+𝜇𝐻+𝛿−𝜓)
0 0

0
0

0
0

1

(𝛼3+𝜇𝑉)
0

𝛼3

(𝛼3+𝜇𝑉)𝜇𝑉

1

𝜇𝑉)

 
 
 
 

. 

Thus, we get the next generation matrix 𝐾 = 𝐹.𝑀−1 and the maximum eigenvalue of this matrix is given by 

the basic multiplication number 𝑅0. 
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𝐾 =

(

 
 

0
𝛽𝐻Λ𝐻

𝜇𝐻
0 0

0 0 0 0

0
0

0
0

0
0

𝛽𝑉Λ𝑉

𝜇𝑉

0 )

 
 
.

(

 
 
 
 

1

(𝛼1+𝜇𝐻)
0 0 0

𝛼1

(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)

1

(𝛼2+𝜇𝐻+𝛿−𝜓)
0 0

0
0

0
0

1

(𝛼3+𝜇𝑉)
0

𝛼3

(𝛼3+𝜇𝑉)𝜇𝑉

1

𝜇𝑉)

 
 
 
 

. 

𝐾 =

(

 
 

𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)

𝛽𝐻Λ𝐻

𝜇𝐻(𝛼2+𝜇𝐻+𝛿−𝜓)
0 0

0 0 0 0

0
0

0
0

𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2

𝛽𝑉Λ𝑉

(𝜇𝑉)
2

0 0 )

 
 

. 

𝐾𝐻 = (
𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)

𝛽𝐻Λ𝐻

𝜇𝐻(𝛼2+𝜇𝐻+𝛿−𝜓)

0 0
). 

and 𝐾𝑉 = (
𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2

𝛽𝑉Λ𝑉

(𝜇𝑉)
2

0 0
). 

|𝐾𝐻 − 𝜆𝐼| = 0. 

|(
𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)

𝛽𝐻Λ𝐻

𝜇𝐻(𝛼2+𝜇𝐻+𝛿−𝜓)

0 0
) − (

𝜆 0
0 𝜆

)| = 0. 

|
𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
− 𝜆

𝛽𝐻Λ𝐻

𝜇𝐻(𝛼2+𝜇𝐻+𝛿−𝜓)

0 −𝜆
| = 0. 

(
𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
) 𝜆 − 𝜆2 = 0 ⟹ 𝜆1 = 0 𝑎𝑛𝑑 𝜆2 =

𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
. 

∴ 𝑅0,𝐻 =
𝛼1(𝛽𝐻Λ𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
. 

|𝐾𝑉 − 𝜆𝐼| = 0. 

|(
𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2

𝛽𝑉Λ𝑉

(𝜇𝑉)
2

0 0
) − (

𝜆 0
0 𝜆

)| = 0. 

|
𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2 − 𝜆

𝛽𝑉Λ𝑉

(𝜇𝑉)
2

0 −𝜆
| = 0. 

(
𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2) 𝜆 − 𝜆

2 = 0 ⟹ 𝜆1 = 0 𝑎𝑛𝑑 𝜆2 =
𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2. 

∴ 𝑅0,𝑉 =
𝛼3(𝛽𝑉Λ𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2. 

Hence 𝑅0 = √𝑅0,𝐻, 𝑅0,𝑉 . 

In infection models such as malaria, the infection passes through two species, humans and mosquitoes, so 

the basic reproduction number for one cycle is the square root of the average infection rate between the two 

species. 

𝑅0 = √
𝛼1(𝛽𝐻𝛬𝐻)

𝜇𝐻(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
.

𝛼3(𝛽𝑉𝛬𝑉)

(𝛼3+𝜇𝑉)(𝜇𝑉)
2  =√

𝛼1(𝛽𝐻𝑆𝐻
0 )

(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓)
.
𝛼3(𝛽𝑉𝑆𝑉

0)

(𝛼3+𝜇𝑉)𝜇𝑉
 = √

𝛼1(𝛽𝐻𝑆𝐻
0 ).𝛼3(𝛽𝑉𝑆𝑉

0)

(𝛼1+𝜇𝐻)(𝛼2+𝜇𝐻+𝛿−𝜓).(𝛼3+𝜇𝑉)𝜇𝑉
  . 

1- If 𝑅0 ≤ 1, the disease-free equilibrium point is stable, and disease disappears from the population. 

2- If 𝑅0 > 1, the disease-free equilibrium point is unstable, allowing the disease to emerge and spread in the 

community. 

Due to the complexity of the analytical expression for 𝑅0 and the inability to determine its sign conclusively, 

it was not possible to prove the local stability of the disease-free point. Therefore, we adopted the Lyapunov 

function to prove the global stability of the system, which gives an accurate result independent of the values 

of 𝑅0. 
 
Stability analysis using the Lyapunov function of DFE: 

We first divide the variables into two groups: 

Human variables are 𝑋 = {𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑅𝐻}. 
Variables specific to the mosquitoes is 𝑌 = {𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉}. 
According to the methodology of (Korobeinikov) and colleagues, we divide the system into two parts: the 

human system 𝐹(𝑋) and the carrier system (the mosquito) 𝐹(𝑌). For each part a function is volterra based 

on the combination of linear and nonlinear terms [11]. 

𝐹(𝑋) =

{
 
 

 
 
𝑑𝑆𝐻

𝑑𝑡
= Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      

𝑑𝐸𝐻

𝑑𝑡
= 𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻              

𝑑𝐼𝐻

𝑑𝑡
= 𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻

𝑑𝑅𝐻

𝑑𝑡
= 𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻                     

           ,                𝐹(𝑌) =

{
 
 

 
 
𝑑𝑆𝑉

𝑑𝑡
= Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     

𝑑𝐸𝑉

𝑑𝑡
= 𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉  

𝑑𝐼𝑉

𝑑𝑡
= 𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉                     

. 
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The general form of the Volterra function can be expressed as follows: 

𝑈 = ∑ 𝛼𝑖 (𝑥𝑖 − 𝑥𝑖
∗ − 𝑥𝑖

∗𝑙𝑛
𝑥𝑖

𝑥𝑖
∗)𝑖  𝑠. 𝑡 𝑥𝑖 − 𝑥𝑖

∗ − 𝑥𝑖
∗𝑙𝑛

𝑥𝑖

𝑥𝑖
∗ > 0 ∀𝑥𝑖 > 0 . 

This type of Volterra function has been used because of its suitability for global stability analysis in 

epidemiological models, especially in cases where the value of 𝑅0 is not defined as being greater or less than 

1 [12-13]. 

In many previous studies, the shape of the Lyapunov function is chosen according to the value of 𝑅0, where 

simple linear or quadratic functions are used when 𝑅0 ≤ 1, while different functions are constructed when 

𝑅0 > 1 to prove endemic stability [14]. 

Because the Volterra function is logarithmic in form, which guarantees its positivity for all positive values 

of the variables, this formulation makes the derivative of the function negative or zero only at equilibrium, 

which confirms its effectiveness in analyzing the stability of the system directly without the need to solve 
differential equations explicitly. In this way, the classical theory of Volterra functions is linked to the stability 

analysis of traditional epidemiological models, providing a powerful tool for assessing the dynamics of 

infectious diseases.[13] 

To understand how to achieve the conditions for practical Lyapunov, the work methodology was explained 

step by step. This reflects the validity and soundness of the presented analysis and confirms the reliability 
of the results obtained. 

1- The Volterra function of 𝐹(𝑋)  is  

𝑈1(𝑋) = 𝛼𝑆𝐻 (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) > 0 ∀ 𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 > 0 . 

The 𝑅𝐻 class was not included in the Volterra function because it does not directly contribute to the 

transmission dynamics and can be represented in terms of other variables through the population 
conservation relationship. Therefore, omitting it does not affect the results of the stability analysis. Rather, 

it simplifies the function and preserves its analytical effectiveness. 

2- The Volterra function of 𝐹(𝑌) is 

𝑈2(𝑌) = 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉
∗ − 𝑆𝑉

∗𝑙𝑛
𝑆𝑉

𝑆𝑉
∗) + 𝛼𝐸𝑉 (𝐸𝑉 − 𝐸𝑉

∗ − 𝐸𝑉
∗ 𝑙𝑛

𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗ 𝑙𝑛

𝐼𝑉

𝐼𝑉
∗) > 0 ∀ 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉 > 0. 

Proving the positivity of weights in the Lyapunov function: 

Since the variable representing 𝑆𝐻 healthy individuals is not a source of direct infection, we assumed that 

its weight in the Lyapunov function is equal to one 𝛼𝑆𝐻 = 1. 

Now ∵ 𝛼𝑆𝐻 = 1, then 𝛼𝐸𝐻(𝛽𝐻𝑆𝐻𝐼𝐻) = 𝛼𝑆𝐻(𝛽𝐻𝑆𝐻𝐼𝐻) ⟹ 𝛼𝐸𝐻(𝛽𝐻𝑆𝐻𝐼𝐻) = (1)(𝛽𝐻𝑆𝐻𝐼𝐻) ⟹ 𝛼𝐸𝐻 = 1 . 

𝛼𝐼𝐻(𝛼1𝐸𝐻) = 𝛼𝐸𝐻(𝛽𝐻𝑆𝐻𝐼𝐻) ⟹ 𝛼𝐼𝐻(𝛼1𝐸𝐻) = (1)(𝛽𝐻𝑆𝐻𝐼𝐻) ⟹ 𝛼𝐼𝐻 =
(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼1𝐸𝐻)
. 

𝛼𝑆𝑉(𝛽𝑉𝑆𝑉𝐼𝑉) = 𝛼𝐼𝐻(𝛼1𝐸𝐻) ⟹ 𝛼𝑆𝑉(𝛽𝑉𝑆𝑉𝐼𝑉) = (
(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼1𝐸𝐻)
)(𝛼1𝐸𝐻) ⟹ 𝛼𝑆𝑉 =

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
. 

𝛼𝐸𝑉(𝛽𝑉𝑆𝑉𝐼𝑉) = 𝛼𝑆𝑉(𝛽𝑉𝑆𝑉𝐼𝑉) ⟹ 𝛼𝐸𝑉(𝛽𝑉𝑆𝑉𝐼𝑉) = (
(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
)(𝛽𝑉𝑆𝑉𝐼𝑉) ⟹ 𝛼𝐸𝑉 =

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
. 

𝛼𝐼𝑉(𝛼3𝐸𝑉) = 𝛼𝐸𝑉(𝛽𝑉𝑆𝑉𝐼𝑉) ⟹ 𝛼𝐼𝑉(𝛼3𝐸𝑉) =
(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
(𝛽𝑉𝑆𝑉𝐼𝑉)) ⟹ 𝛼𝐼𝑉 =

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼3𝐸𝑉)
. 

These weights were determined from the limits responsible for transmission of infection in the system, i.e. 
those that link infected and uninfected variables or between humans and mosquitoes. When choosing each 

weight, we only take the limit that is critical for transmission of infection. 

Now we know the overall Lyapunov function in the following form.[12]: 

𝑉(𝑋, 𝑌) = 𝑈1(𝑋) + 𝑈2(𝑌). 

𝑉(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉

∗ − 𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗) +

𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉
∗ − 𝐸𝑉

∗ 𝑙𝑛
𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗). 

We are now analyzing the stability of the disease-free point using the Lyapunov function. 

1- 𝑉(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉

∗ − 𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗) +

𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉
∗ − 𝐸𝑉

∗ 𝑙𝑛
𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗) > 0, ∀𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉 ≠ 𝑆𝐻

∗ , 𝐸𝐻
∗ , 𝐼𝐻

∗ , 𝑆𝑉
∗ , 𝐸𝑉

∗ , 𝐼𝑉
∗ . 

2- 𝑉(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉

∗ − 𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗) +

𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉
∗ − 𝐸𝑉

∗ 𝑙𝑛
𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗) = 0, ∀ 𝑆𝐻 , 𝑆𝑉 > 0, 𝐸𝐻 , 𝐼𝐻 , 𝐸𝑉 , 𝐼𝑉 = 0, 𝛼𝑖 > 0  ; 𝑆𝐻 , 𝑆𝑉 = 𝑆𝐻

∗ , 𝑆𝑉
∗. 

After forming the Lyapunov function, we now move to its derivative with respect to time to study its change 
at the disease-free point.  

3- 𝑉̇(𝑋, 𝑌) = ∇𝑈1(𝑋). 𝐹(𝑋) + ∇𝑈2(𝑌). 𝐹(𝑌). 

∇𝑈1(𝑋). 𝐹(𝑋) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ )

𝑑𝑆𝐻

𝑑𝑡
+ 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ )

𝑑𝐸𝐻

𝑑𝑡
+ 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ )

𝑑𝐼𝐻

𝑑𝑡
. 

∇𝑈2(𝑌). 𝐹(𝑌) = 𝛼𝑆𝑉  (𝑆𝑉 − 𝑆𝑉
∗ − 𝑆𝑉

∗𝑙𝑛
𝑆𝑉

𝑆𝑉
∗)

𝑑𝑆𝑉

𝑑𝑡
+ 𝛼𝐸𝑉 (𝐸𝑉 − 𝐸𝑉

∗ − 𝐸𝑉
∗ 𝑙𝑛

𝐸𝑉

𝐸𝑉
∗)

𝑑𝐸𝑉

𝑑𝑡
+ 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗)

𝑑𝐼𝑉

𝑑𝑡
. 
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⟹ 𝑉̇(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ )

𝑑𝑆𝐻

𝑑𝑡
+ 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ )

𝑑𝐸𝐻

𝑑𝑡
+ 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ )

𝑑𝐼𝐻

𝑑𝑡
+ 𝛼𝑆𝑉  (𝑆𝑉 − 𝑆𝑉

∗ −

𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗)

𝑑𝑆𝑉

𝑑𝑡
+ 𝛼𝐸𝑉 (𝐸𝑉 − 𝐸𝑉

∗ − 𝐸𝑉
∗𝑙𝑛

𝐸𝑉

𝐸𝑉
∗)

𝑑𝐸𝑉

𝑑𝑡
+ 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗ 𝑙𝑛

𝐼𝑉

𝐼𝑉
∗)

𝑑𝐼𝑉

𝑑𝑡
. 

⟹ 𝑉̇(𝑋, 𝑌) = 𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
)
𝑑𝑆𝐻

𝑑𝑡
+ 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
)
𝑑𝐸𝐻

𝑑𝑡
+ 𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
)
𝑑𝐼𝐻

𝑑𝑡
+ 𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
)
𝑑𝑆𝑉

𝑑𝑡
+ 𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
)
𝑑𝐸𝑉

𝑑𝑡
+ 𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
)
𝑑𝐼𝑉

𝑑𝑡
. 

We now substitute the values of the variables at the disease-free state, i.e. at the infection-free equilibrium 

point, into the derivative of the Lyapunov function (
Λ𝐻

𝜇𝐻
, 0,0,0,

Λ𝑉

𝜇𝑉
, 0,0). 

⟹ 𝑉̇(𝑋, 𝑌) = (1) (1 −
𝑆𝐻
∗

𝑆𝐻
)
𝑑𝑆𝐻

𝑑𝑡
+ (1) (1 −

(0)

𝐸𝐻
)
𝑑𝐸𝐻

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼1𝐸𝐻)
) (1 −

(0)

𝐼𝐻
)
𝑑𝐼𝐻

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
) (1 −

𝑆𝑉
∗

𝑆𝑉
)
𝑑𝑆𝑉

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
. ) (1 −

(0)

𝐸𝑉
)
𝑑𝐸𝑉

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼3𝐸𝑉)
) (1 −

(0)

𝐼𝑉
)
𝑑𝐼𝑉

𝑑𝑡
. 

At DFE  𝑆𝐻 = 𝑆𝐻
∗  , 𝑆𝑉 = 𝑆𝑉

∗  and 
𝑑𝐸𝐻

𝑑𝑡
= 

𝑑𝐼𝐻

𝑑𝑡
= 

𝑑𝐸𝑉

𝑑𝑡
= 

𝑑𝐼𝑉

𝑑𝑡
=  0 . 

⟹ 𝑉̇(𝑋, 𝑌) = 0. 
Since we know the Lyapunov function of the system and have obtained its derivatives, we now resort to 

Lasalle's principle to determine whether the system at the point is radically stable or not. 

We have shown that the function 𝑉 > 0 for all points outside the disease-free point, that 𝑉 = 0 at the disease-

free point, and that its time derivative is𝑉 ≤ 0. Then based on Lassalle's principle, we can conclude that the 

disease-free point is globally stable. 
 Now, we now turn to the study of the endemic point to evaluate the stability of the system in the presence 

of disease in the population. 

 

Endemic Equilibrium (EE): 
𝑑𝑆𝐻

𝑑𝑡
= 0 ⟹ Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 = 0 ⟹ 𝑆𝐻 =

(Λ𝐻+𝜌𝑅𝐻)

(𝛽𝐻𝐼𝐻+𝜇𝐻)
. 

𝑑𝐸𝐻

𝑑𝑡
= 0 ⟹ 𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻 = 0 ⟹ 𝐸𝐻 =

𝛽𝐻𝑆𝐻𝐼𝐻

(𝛼1+𝜇𝐻)
. 

𝑑𝐼𝐻

𝑑𝑡
= 0 ⟹ 𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻 = 0 ⟹ 𝐼𝐻 =

𝛼1𝐸𝐻

(𝛼2+𝜇𝐻+𝛿−𝜓)
. 

𝑑𝑅𝐻

𝑑𝑡
= 0 ⟹ 𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻 = 0 ⟹ 𝑅𝐻 =

𝛼2𝐼𝐻

(𝜇𝐻+𝜌)
. 

𝑑𝑆𝑉

𝑑𝑡
= 0 ⟹ Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉 = 0 ⟹ 𝑆𝑉 =

Λ𝑉

(𝛽𝑉𝐼𝑉+𝜇𝑉)
. 

𝑑𝐸𝑉

𝑑𝑡
= 0 ⟹ 𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉 = 0 ⟹ 𝐸𝑉 =

𝛽𝑉𝑆𝑉𝐼𝑉

(𝛼3+𝜇𝑉)
 . 

𝑑𝐼𝑉

𝑑𝑡
= 0 ⟹ 𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉 = 0 ⟹ 𝐼𝑉 =

𝛼3𝐸𝑉

𝜇𝑉
. 

Therefore 𝐸𝐸 = {𝑆𝐻
∗ , 𝐸𝐻

∗ , 𝐼𝐻
∗ , 𝑅𝐻

∗ , 𝑆𝑉
∗ , 𝐸𝑉

∗ , 𝐼𝑉
∗}. 

{
(Λ𝐻+𝜌𝑅𝐻

∗ )

(𝛽𝐻𝐼𝐻
∗ +𝜇𝐻)

,
𝛽𝐻𝑆𝐻

∗ 𝐼𝐻
∗

(𝛼1+𝜇𝐻)
,

𝛼1𝐸𝐻
∗

(𝛼2+𝜇𝐻+𝛿−𝜓)
,
𝛼2𝐼𝐻

∗

(𝜇𝐻+𝜌)
,

Λ𝑉

(𝛽𝑉𝐼𝑉
∗+𝜇𝑉)

,
𝛽𝑉𝑆𝑉

∗ 𝐼𝑉
∗

(𝛼3+𝜇𝑉)
,
𝛼3𝐸𝑉

∗

𝜇𝑉
}. 

 

Stability analysis using the Lyapunov function of EE: 

Similar to what was done in the case of the DFE point, we now apply the Lyapunov function to the endemic 

point to analyze the behavior of the system around it. 

𝑉(𝑋, 𝑌) = 𝑈1(𝑋) + 𝑈2(𝑌). 

𝑉(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉

∗ − 𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗) +

𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉
∗ − 𝐸𝑉

∗ 𝑙𝑛
𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗). 

We are now analyzing the stability of the endemic point using the Lyapunov function. 

1- 𝑉(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉

∗ − 𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗) +

𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉
∗ − 𝐸𝑉

∗ 𝑙𝑛
𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗) > 0, ∀𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉 ≠ 𝑆𝐻

∗ , 𝐸𝐻
∗ , 𝐼𝐻

∗ , 𝑆𝑉
∗ , 𝐸𝑉

∗ , 𝐼𝑉
∗ . 

2- 𝑉(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉

∗ − 𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗) +

𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉
∗ − 𝐸𝑉

∗ 𝑙𝑛
𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗) = 0, ∀ 𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉 = 𝑆𝐻

∗ , 𝐸𝐻
∗ , 𝐼𝐻

∗ , 𝑅𝐻
∗ , 𝑆𝑉

∗ , 𝐸𝑉
∗ , 𝐼𝑉

∗ , 𝛼𝑖 > 0. 

We relied on the fact that each variable at the endemic point is equal to its reference value because at this 
point the system is in a state of equilibrium and the variables do not change with time. 

After forming the Lyapunov function, we now move to its derivative with respect to time to study its change 

at the endimic point.  

3- 𝑉̇(𝑋, 𝑌) = ∇𝑈1(𝑋). 𝐹(𝑋) + ∇𝑈2(𝑌). 𝐹(𝑌). 
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⟹ 𝑉̇(𝑋, 𝑌) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ )

𝑑𝑆𝐻

𝑑𝑡
+ 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ )

𝑑𝐸𝐻

𝑑𝑡
+ 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ )

𝑑𝐼𝐻

𝑑𝑡
+ 𝛼𝑆𝑉  (𝑆𝑉 − 𝑆𝑉

∗ −

𝑆𝑉
∗𝑙𝑛

𝑆𝑉

𝑆𝑉
∗)

𝑑𝑆𝑉

𝑑𝑡
+ 𝛼𝐸𝑉 (𝐸𝑉 − 𝐸𝑉

∗ − 𝐸𝑉
∗𝑙𝑛

𝐸𝑉

𝐸𝑉
∗)

𝑑𝐸𝑉

𝑑𝑡
+ 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗ 𝑙𝑛

𝐼𝑉

𝐼𝑉
∗)

𝑑𝐼𝑉

𝑑𝑡
. 

⟹ 𝑉̇(𝑋, 𝑌) = 𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
)
𝑑𝑆𝐻

𝑑𝑡
+ 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
)
𝑑𝐸𝐻

𝑑𝑡
+ 𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
)
𝑑𝐼𝐻

𝑑𝑡
+ 𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
)
𝑑𝑆𝑉

𝑑𝑡
+ 𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
)
𝑑𝐸𝑉

𝑑𝑡
+ 𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
)
𝑑𝐼𝑉

𝑑𝑡
. 

We now substitute the values of the variables at the endemic state, , into the derivative of the Lyapunov 

function (
(Λ𝐻+𝜌𝑅𝐻

∗ )

(𝛽𝐻𝐼𝐻
∗ +𝜇𝐻)

,
𝛽𝐻𝑆𝐻

∗ 𝐼𝐻
∗

(𝛼1+𝜇𝐻)
,

𝛼1𝐸𝐻
∗

(𝛼2+𝜇𝐻+𝛿−𝜓)
,
𝛼2𝐼𝐻

∗

(𝜇𝐻+𝜌)
,

Λ𝑉

(𝛽𝑉𝐼𝑉
∗+𝜇𝑉)

,
𝛽𝑉𝑆𝑉

∗ 𝐼𝑉
∗

(𝛼3+𝜇𝑉)
,
𝛼3𝐸𝑉

∗

𝜇𝑉
). 

⟹ 𝑉̇(𝑋, 𝑌) = (1) (1 −
(
(Λ𝐻+𝜌𝑅𝐻

∗ )

(𝛽𝐻𝐼𝐻
∗ +𝜇𝐻)

)

𝑆𝐻
)
𝑑𝑆𝐻

𝑑𝑡
+ (1)(1 −

(
𝛽𝐻𝑆𝐻

∗ 𝐼𝐻
∗

(𝛼1+𝜇𝐻)
)

𝐸𝐻
)
𝑑𝐸𝐻

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼1𝐸𝐻)
)(1 −

(
𝛼1𝐸𝐻

∗

(𝛼2+𝜇𝐻+𝛿−𝜓)
)

𝐼𝐻
)
𝑑𝐼𝐻

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
)(1 −

(
Λ𝑉

(𝛽𝑉𝐼𝑉
∗ +𝜇𝑉)

)

𝑆𝑉
)
𝑑𝑆𝑉

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
. ) (1 −

(
𝛽𝑉𝑆𝑉

∗ 𝐼𝑉
∗

(𝛼3+𝜇𝑉)
)

𝐸𝑉
)
𝑑𝐸𝑉

𝑑𝑡
+ (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼3𝐸𝑉)
) (1 −

(
𝛼3𝐸𝑉

∗

𝜇𝑉
)

𝐼𝑉
)
𝑑𝐼𝑉

𝑑𝑡
. 

⟹ 𝑉̇(𝑋, 𝑌) =  (1 − (
(Λ𝐻+𝜌𝑅𝐻

∗ )

𝑆𝐻(𝛽𝐻𝐼𝐻
∗ +𝜇𝐻)

)) (Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      ) + (1 − (
𝛽𝐻𝑆𝐻

∗ 𝐼𝐻
∗

𝐸𝐻(𝛼1+𝜇𝐻)
)) (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻)      +

(
(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼1𝐸𝐻)
) (1 − (

𝛼1𝐸𝐻
∗

𝐼𝐻(𝛼2+𝜇𝐻+𝛿−𝜓)
)) (𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻) + (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
) (1 − (

Λ𝑉

𝑆𝑉(𝛽𝑉𝐼𝑉
∗+𝜇𝑉)

)) (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 −

𝜇𝑉𝑆𝑉    ) + (
(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛽𝑉𝑆𝑉𝐼𝑉)
. ) (1 − (

𝛽𝑉𝑆𝑉
∗ 𝐼𝑉
∗

𝐸𝑉(𝛼3+𝜇𝑉)
)) (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉) + (

(𝛽𝐻𝑆𝐻𝐼𝐻)

(𝛼3𝐸𝑉)
) (1 − (

𝛼3𝐸𝑉
∗

𝐼𝑉𝜇𝑉
)) (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉). 

When studying the endemic point, it is found that the derivative of the Lyapunov function takes a complex 

form, comprising both positive and negative terms, which makes it difficult to determine the sign of the 
derivative directly. Therefore, it is not possible to explicitly conclude whether the point is stable based solely 

on this derivative, and it is necessary to rely on other analytical methods or numerical studies to evaluate 

the system's stability. 

Therefore, we now resort to the numerical interpretation of the malaria model using Euler's method, with 

the introduction of values for the variables at the endemic point, to study the behavior of the system at this 

point and evaluate its stability in the event of the presence of the disease among the population. 
 

Numerical Representation 

To support the results extracted from the mathematical analysis, a numerical simulation of the model was 

conducted via MATLAB, and the solution of the deterministic system is shown in the following figure: 

 
Figure 1. deterministic malaria model, 𝜦𝑯 = 𝟏𝟎,𝜦𝑽 = 𝟓,𝜷𝑯 = 𝟎. 𝟎𝟎𝟐 , 𝜷𝑽 = 𝟎. 𝟎𝟎𝟏𝟓, 𝝁𝑯 = 𝟎. 𝟎𝟏, , 𝝁𝑽 = 𝟎. 𝟎𝟓, 𝝆 

= 0.1, 𝜹= 0.02, 𝝍 = 0.01,𝜶𝟏 = 𝟎. 𝟑, 𝜶𝟐 = 𝟎. 𝟐, 𝜶𝟑 = 𝟎. 𝟒. 

 

The numerical drawing of the deterministic model of malaria calculated by the Euler method shows the 

evolution of the number of human populations over time. We notice a decrease in the number of healthy 

people (𝑆𝐻) and a gradual increase in the number of infected people (𝐼𝐻) and recovered people (𝑅𝐻), while the 

number of infected mosquitoes (𝐼𝑉) increases and stabilizes after a period. This indicates that the system is 

approaching an endemic equilibrium. 
Reflecting the continued spread of the disease in the community without disappearing, i.e., the DFE is 

unstable, and 𝑅0 > 1. 
After studying the numerical behavior of the deterministic system, we now move on to formulating the 
stochastic model of the system (1) to take the effect of randomness into account. 
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The stochastic system model (1).[15]: 

In biological and epidemiological systems, natural variables often undergo random changes as a result of 
environmental factors or individual fluctuations in society. 

Therefore, it is necessary to convert the deterministic model (1) into a stochastic model to take these changes 

into account and analyze their impact on the disease dynamics. To represent these random effects, we 

assume the presence of Wiener-type noise, which allows us to simulate small, cumulative random changes 

in the system's variables, which better reflects the realistic nature of complex biological or physical 
processes. 

Rewrite the model as                                                                                                             

   

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑆𝐻

𝑑𝑡
= −𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻                   

𝑑𝐸𝐻

𝑑𝑡
= 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝛼1𝐸𝐻 − 𝜇𝐻𝐸𝐻                  

𝑑𝐼𝐻

𝑑𝑡
= 𝛼1𝐸𝐻 − 𝛼2𝐼𝐻 − 𝜇𝐻𝐼𝐻 − 𝛿𝐼𝐻 +𝜓𝐼𝐻

𝑑𝑅𝐻

𝑑𝑡
= 𝛼2𝐼𝐻 − 𝜇𝐻𝑅𝐻 − 𝜌𝑅𝐻                         

𝑑𝑆𝑉

𝑑𝑡
= −𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉                                 

𝑑𝐸𝑉

𝑑𝑡
= 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝛼3𝐸𝑉 − 𝜇𝑉𝐸𝑉                    

𝑑𝐼𝑉

𝑑𝑡
= 𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉                                        

                                                                                 (2) 

1- Probabilities associated with changes in the transmission of Malaria model: 

 

Table 2. Probabilities associated with changes in the transmission of Malaria model 

Probability,𝒑𝒊 Changes,∆𝒙𝒊 

𝜷𝑯𝑺𝑯𝑰𝑯 ∆𝐭. (−𝟏, 𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝝁𝑯𝑺𝑯 ∆𝒕. (−𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝝆𝑹𝑯 ∆𝒕. (𝟏, 𝟎, 𝟎, −𝟏, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝜶𝟏𝑬𝑯 ∆𝒕. (𝟎, −𝟏, 𝟏, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝝁𝑯𝑬𝑯 ∆𝒕. (𝟎, −𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝜶𝟐𝑰𝑯 ∆𝒕. (𝟎, 𝟎, −𝟏, 𝟏, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝝁𝑯𝑰𝑯∆𝒕. (𝟎, 𝟎, −𝟏, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝜹𝑰𝑯 ∆𝒕. (𝟎, 𝟎, −𝟏, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝝍𝑰𝑯 ∆𝒕. (𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝝁𝑯𝑹𝑯∆𝒕. (𝟎, 𝟎, 𝟎, −𝟏, 𝟎, 𝟎, 𝟎)𝐭𝐫. 

𝜷𝑽𝑺𝑽𝑰𝑽 ∆𝒕. (𝟎, 𝟎, 𝟎, 𝟎, −𝟏, 𝟏, 𝟎)𝐭𝐫. 

𝝁𝑽𝑺𝑽  ∆𝒕. (𝟎, 𝟎, 𝟎, 𝟎, −𝟏, 𝟎, 𝟎)𝐭𝐫. 

𝜶𝟑𝑬𝑽  ∆𝒕. (𝟎, 𝟎, 𝟎, 𝟎, 𝟎, −𝟏, 𝟏)𝐭𝐫. 

𝝁𝑽𝑬𝑽  ∆𝒕. (𝟎, 𝟎, 𝟎, 𝟎, 𝟎, −𝟏, 𝟎)𝐭𝐫. 

𝝁𝑽𝑰𝑽∆𝒕. (𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, −𝟏)𝐭𝐫. 

 

  

2- The expectation 𝐸(∆𝑥) = ∑ 𝑝𝑖∆𝑥𝑖
15
𝑖=1  is 7 × 1 matrix, the expectation can be expressed as follows.                                                                                                                                                       

𝐸(∆𝑥) = ∑ 𝑝𝑖∆𝑥𝑖
15
𝑖=1 = 𝑝1∆𝑥1 + 𝑝2∆𝑥2 + 𝑝3∆𝑥3 +⋯+ 𝑝15∆𝑥15 . 

𝐸(∆𝑥) = ∑ 𝑝𝑖∆𝑥𝑖  
15
𝑖=1 = 𝛽𝐻𝑆𝐻𝐼𝐻

(

 
 
 
 

−1
1
0
0
0
0
0 )

 
 
 
 

+ 𝜇𝐻𝑆𝐻  

(

 
 
 
 

−1
0
0
0
0
0
0 )

 
 
 
 

+ 𝜌𝑅𝐻  

(

 
 
 
 

1
0
0
−1
0
0
0 )

 
 
 
 

+ 𝛼1𝐸𝐻

(

 
 
 
 

0
−1
1
0
0
0
0 )

 
 
 
 

+ 𝜇𝐻𝐸𝐻

(

 
 
 
 

0
−1
0
0
0
0
0 )

 
 
 
 

+ 𝛼2𝐼𝐻

(

 
 
 
 

0
0
−1
1
0
0
0 )

 
 
 
 

+

𝜇𝐻𝐼𝐻

(

 
 
 
 

0
0
−1
0
0
0
0 )

 
 
 
 

+ 𝛿𝐼𝐻  

(

 
 
 
 

0
0
−1
0
0
0
0 )

 
 
 
 

+ 𝜓𝐼𝐻

(

 
 
 
 

0
0
1
0
0
0
0)

 
 
 
 

+ 𝜇𝐻𝑅𝐻

(

 
 
 
 

0
0
0
−1
0
0
0 )

 
 
 
 

 +  
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𝛽𝑉𝑆𝑉𝐼𝑉

(

 
 
 
 

0
0
0
0
−1
1
0 )

 
 
 
 

+ 𝜇𝑉𝑆𝑉

(

 
 
 
 

0
0
0
0
−1
0
0 )

 
 
 
 

+ 𝛼3𝐸𝑉

(

 
 
 
 

0
0
0
0
0
−1
1 )

 
 
 
 

+ 𝜇𝑉𝐸𝑉

(

 
 
 
 

0
0
0
0
0
−1
0 )

 
 
 
 

+ 𝜇𝑉𝐼𝑉

(

 
 
 
 

0
0
0
0
0
0
−1)

 
 
 
 

.                                                                                             

 

𝐸(∆𝑥) = ∑ 𝑝𝑖∆𝑥𝑖  
15
𝑖=1 =

(

 
 
 
 

−𝛽𝐻𝑆𝐻𝐼𝐻
𝛽𝐻𝑆𝐻𝐼𝐻
0
0
0
0
0 )

 
 
 
 

+ 

(

 
 
 
 

−𝜇𝐻𝑆𝐻
0
0
0
0
0
0 )

 
 
 
 

+ 

(

 
 
 
 

𝜌𝑅𝐻 
0
0

−𝜌𝑅𝐻 
0
0
0 )

 
 
 
 

+

(

 
 
 
 

0
−𝛼1𝐸𝐻
𝛼1𝐸𝐻
0
0
0
0 )

 
 
 
 

+

(

 
 
 
 

0
−𝜇𝐻𝐸𝐻
0
0
0
0
0 )

 
 
 
 

+

(

 
 
 
 

0
0

−𝛼2𝐼𝐻
𝛼2𝐼𝐻
0
0
0 )

 
 
 
 

+

(

 
 
 
 

0
0

−𝜇𝐻𝐼𝐻
0
0
0
0 )

 
 
 
 

+

 

(

 
 
 
 

0
0

−𝛿𝐼𝐻
0
0
0
0 )

 
 
 
 

+

(

 
 
 
 

0
0
𝜓𝐼𝐻
0
0
0
0 )

 
 
 
 

+

(

 
 
 
 

0
0
0

−𝜇𝐻𝑅𝐻
0
0
0 )

 
 
 
 

 +  

(

 
 
 
 

0
0
0
0

−𝛽𝑉𝑆𝑉𝐼𝑉
𝛽𝑉𝑆𝑉𝐼𝑉
0 )

 
 
 
 

+

(

 
 
 
 

0
0
0
0

−𝜇𝑉𝑆𝑉
0
0 )

 
 
 
 

+

(

 
 
 
 

0
0
0
0
0

−𝛼3𝐸𝑉
𝛼3𝐸𝑉 )

 
 
 
 

+

(

 
 
 
 

0
0
0
0
0

−𝜇𝑉𝐸𝑉
0 )

 
 
 
 

+

(

 
 
 
 

0
0
0
0
0
0

−𝜇𝑉𝐼𝑉)

 
 
 
 

.      

𝐸(∆𝑥) =

(

 
 
 
 

−𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 
𝛽𝐻𝑆𝐻𝐼𝐻  − 𝛼1𝐸𝐻 − 𝜇𝐻𝐸𝐻 

𝛼1𝐸𝐻 − 𝛼2𝐼𝐻 − 𝜇𝐻𝐼𝐻 − 𝛿𝐼𝐻 + 𝜓𝐼𝐻
−𝜌𝑅𝐻 + 𝛼2𝐼𝐻 − 𝜇𝐻𝑅𝐻  

−𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉
𝛽𝑉𝑆𝑉𝐼𝑉  − 𝛼3𝐸𝑉 − 𝜇𝑉𝐸𝑉

𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉 )

 
 
 
 

∆𝑡. 

3- The diffusion matrix G of dimension 7 × 15 is 

𝐺 =

(

 
 
 
 
 

  

−√𝛽𝐻𝑆𝐻𝐼𝐻

√𝛽𝐻𝑆𝐻𝐼𝐻
0
0
0
0
0

  

−√𝜇𝐻𝑆𝐻
0
0
0
0
0
0

  

√𝜌𝑅𝐻 
0
0

−√𝜌𝑅𝐻 
0
0
0

  

0

−√𝛼1𝐸𝐻

√𝛼1𝐸𝐻
0
0
0
0

  

0

−√𝜇𝐻𝐸𝐻
0
0
0
0
0

  

0
0

−√𝛼2𝐼𝐻

√𝛼2𝐼𝐻
0
0
0

  

0
0

−√𝜇𝐻𝐼𝐻
0
0
0
0

0
0

−√𝛿𝐼𝐻
0
0
0
0

. 

   

0
0

√𝜓𝐼𝐻
0
0
0
0

   

0
0
0

−√𝜇𝐻𝑅𝐻
0
0
0

   

0
0
0
0

−√𝛽𝑉𝑆𝑉𝐼𝑉

√𝛽𝑉𝑆𝑉𝐼𝑉
0

   

0
0
0
0

−√𝜇𝑉𝑆𝑉
0
0

   

0
0
0
0
0

−√𝛼3𝐸𝑉

√𝛼3𝐸𝑉

   

0
0
0
0
0

−√𝜇𝑉𝐸𝑉
0

    

0
0
0
0
0
0

−√𝜇𝑉𝐼𝑉

 

)

 
 
 
 

. 

4- we formulate the stochastic system as     

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝑔(𝑋(𝑡), 𝑡)𝑑𝑊(𝑡). 

Where 𝑑𝑋(𝑡) =

[
 
 
 
 
 
 
 
𝑑𝑆𝐻,𝑡
𝑑𝐸𝐻,𝑡
𝑑𝐼𝐻,𝑡
𝑑𝑅𝐻,𝑡
𝑑𝑆𝑉,𝑡
𝑑𝐸𝑉,𝑡
𝑑𝐼𝑉,𝑡 ]

 
 
 
 
 
 
 

, 𝑓(𝑋(𝑡), 𝑡) = [
𝐸(∆𝑋)

∆𝑡
] , 𝑔(𝑋(𝑡), 𝑡) = 𝐺 and  𝑑𝑊(𝑡) =

[
 
 
 
 
 
𝑑𝑊1(𝑡)

𝑑𝑊2(𝑡).
.
.

𝑑𝑊15(𝑡)]
 
 
 
 
 

 . 

Thus, the system takes the following form: 
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(

 
 
 
 
 

𝑑𝑆𝐻,𝑡
𝑑𝐸𝐻,𝑡
𝑑𝐼𝐻,𝑡
𝑑𝑅𝐻,𝑡
𝑑𝑆𝑉,𝑡
𝑑𝐸𝑉,𝑡
𝑑𝐼𝑉,𝑡 )

 
 
 
 
 

=

(

 
 
 
 

−𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 
𝛽𝐻𝑆𝐻𝐼𝐻  − 𝛼1𝐸𝐻 − 𝜇𝐻𝐸𝐻 

𝛼1𝐸𝐻 − 𝛼2𝐼𝐻 − 𝜇𝐻𝐼𝐻 − 𝛿𝐼𝐻 + 𝜓𝐼𝐻
−𝜌𝑅𝐻 + 𝛼2𝐼𝐻 − 𝜇𝐻𝑅𝐻  

−𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉
𝛽𝑉𝑆𝑉𝐼𝑉  − 𝛼3𝐸𝑉 − 𝜇𝑉𝐸𝑉

𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉 )

 
 
 
 

𝑑𝑡  + 

(

 
 
 
 
 

  

−√𝛽𝐻𝑆𝐻𝐼𝐻

√𝛽𝐻𝑆𝐻𝐼𝐻
0
0
0
0
0

  

−√𝜇𝐻𝑆𝐻
0
0
0
0
0
0

  

√𝜌𝑅𝐻 
0
0

−√𝜌𝑅𝐻 
0
0
0

  

0

−√𝛼1𝐸𝐻

√𝛼1𝐸𝐻
0
0
0
0

  

0

−√𝜇𝐻𝐸𝐻
0
0
0
0
0

  

0
0

−√𝛼2𝐼𝐻

√𝛼2𝐼𝐻
0
0
0

  

0
0

−√𝜇𝐻𝐼𝐻
0
0
0
0

0
0

−√𝛿𝐼𝐻
0
0
0
0

. 

   

0
0

√𝜓𝐼𝐻
0
0
0
0

   

0
0
0

−√𝜇𝐻𝑅𝐻
0
0
0

   

0
0
0
0

−√𝛽𝑉𝑆𝑉𝐼𝑉

√𝛽𝑉𝑆𝑉𝐼𝑉
0

   

0
0
0
0

−√𝜇𝑉𝑆𝑉
0
0

   

0
0
0
0
0

−√𝛼3𝐸𝑉

√𝛼3𝐸𝑉

   

0
0
0
0
0

−√𝜇𝑉𝐸𝑉
0

    

0
0
0
0
0
0

−√𝜇𝑉𝐼𝑉

 

)

 
 
 
 

.

(

  
 

𝑑𝑊1(𝑡)

𝑑𝑊2(𝑡).
.
.

𝑑𝑊15(𝑡))

  
 

. 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑑𝑆𝐻,𝑡 = (𝜌𝑅𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻)𝑑𝑡 − √𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑡) − √𝜇𝐻𝑆𝐻𝑑𝑊2(𝑡) + √𝜌𝑅𝐻 𝑑𝑊3(𝑡)

 
                          

𝑑𝐸𝐻,𝑡 = (𝛽𝐻𝑆𝐻𝐼𝐻  − 𝛼1𝐸𝐻 − 𝜇𝐻𝐸𝐻)𝑑𝑡 + √𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑡) − √𝛼1𝐸𝐻𝑑𝑊4(𝑡) − √𝜇𝐻𝐸𝐻𝑑𝑊5(𝑡)     
                                                 

                

𝑑𝐼𝐻,𝑡 = (𝛼1𝐸𝐻 − 𝛼2𝐼𝐻 − 𝜇𝐻𝐼𝐻 − 𝛿𝐼𝐻 + 𝜓𝐼𝐻 )𝑑𝑡 + √𝛼1𝐸𝐻𝑑𝑊4(𝑡) − √𝛼2𝐼𝐻𝑑𝑊6(𝑡) − √𝜇𝐻𝐼𝐻𝑑𝑊7(𝑡) − 

                   √𝛿𝐼𝐻𝑑𝑊8(𝑡) + √𝜓𝐼𝐻𝑑𝑊9(𝑡)                                     
   

𝑑𝑅𝐻,𝑡 = (𝛼2𝐼𝐻 − 𝜌𝑅𝐻 − 𝜇𝐻𝑅𝐻)𝑑𝑡 − √𝜌𝑅𝐻 𝑑𝑊3(𝑡) + √𝛼2𝐼𝐻𝑑𝑊6(𝑡) − √𝜇𝐻𝑅𝐻𝑑𝑊10(𝑡)                            
                     

   

𝑑𝑆𝑉,𝑡 = (−𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉)𝑑𝑡 − √𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑡) − √𝜇𝑉𝑆𝑉𝑑𝑊12(𝑡)               
                                      

                                                    

𝑑𝐸𝑉,𝑡 = (𝛽𝑉𝑆𝑉𝐼𝑉  − 𝛼3𝐸𝑉 − 𝜇𝑉𝐸𝑉)𝑑𝑡 + √𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑡) − √𝛼3𝐸𝑉𝑑𝑊13(𝑡) − √𝜇𝑉𝐸𝑉𝑑𝑊14(𝑡)                                                                                    
𝑑𝐼𝑡 = (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉  )𝑑𝑡 +

 
√𝛼3𝐸𝑉𝑑𝑊13(𝑡) − √𝜇𝑉𝐼𝑉𝑑𝑊15(𝑡)                                                                               

                     (3) 

After formulating the stochastic model of the system, we now move on to formulating the Lyapunov function 
to study the stability of the system under the influence of randomness. 

𝑊(𝑡) = (𝑊1(𝑡),𝑊2(𝑡), … ,𝑊15(𝑡))
𝑇 is independent standard wiener process 𝑍(𝑡) = (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑅𝐻 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉)

𝑇 is a 

seven-dimensional vector function, where T is transposition.  

Introducing a lyapunov function: 

𝑉(𝑡, 𝑍) = 𝛼𝑆𝐻  (𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ ) + 𝛼𝐸𝐻 (𝐸𝐻 − 𝐸𝐻

∗ − 𝐸𝐻
∗ 𝑙𝑛

𝐸𝐻

𝐸𝐻
∗ ) + 𝛼𝐼𝐻 (𝐼𝐻 − 𝐼𝐻

∗ − 𝐼𝐻
∗ 𝑙𝑛

𝐼𝐻

𝐼𝐻
∗ ) + 𝛼𝑅𝐻 (𝑅𝐻 − 𝑅𝐻

∗ − 𝑅𝐻
∗ 𝑙𝑛

𝑅𝐻

𝑅𝐻
∗ ) +

𝛼𝑆𝑉 (𝑆𝑉 − 𝑆𝑉
∗ − 𝑆𝑉

∗𝑙𝑛
𝑆𝑉

𝑆𝑉
∗) + 𝛼𝐸𝑉  (𝐸𝑉 − 𝐸𝑉

∗ − 𝐸𝑉
∗ 𝑙𝑛

𝐸𝑉

𝐸𝑉
∗) + 𝛼𝐼𝑉 (𝐼𝑉 − 𝐼𝑉

∗ − 𝐼𝑉
∗𝑙𝑛

𝐼𝑉

𝐼𝑉
∗). 

Applying the Ito lemma [16] : 

𝑑𝑉(𝑡, 𝑍) = 𝐿𝑉(𝑡, 𝑍)𝑑𝑡 + ∑
𝜕𝑉(𝑡,𝑍)

𝜕𝑥𝑖

7
𝑖 𝑔𝑖(𝑡, 𝑍)𝑑𝑊(𝑡) where 𝑑𝑊(𝑡) =

[
 
 
 
 
 
𝑑𝑊1(𝑡)

𝑑𝑊2(𝑡).
.
.

𝑑𝑊15(𝑡)]
 
 
 
 
 

 . 

Where 𝐿𝑉(𝑡, 𝑍) =
𝜕𝑉

𝜕𝑡
(𝑡, 𝑍) + ∑ 𝑓𝑖(𝑡, 𝑍)

𝜕𝑉

𝜕𝑥𝑖
(𝑡, 𝑍)6

𝑖=1 +
1

2
∑ [𝑔(𝑡, 𝑍)𝑔(𝑡, 𝑍)𝑇]𝑖𝑗
6
𝑖,𝑗

𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑍). 

𝐿𝑉(𝑡, 𝑍) = ∑ 𝑓𝑖(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥𝑖
(𝑡, 𝑍)7

𝑖=1 +
1

2
∑ [𝑔(𝑡, 𝑍)𝑔(𝑡, 𝑍)𝑇]𝑖𝑗
7
𝑖,𝑗

𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑍). 

https://doi.org/10.54361/ajmas.258427
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𝑓𝑖(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥𝑖
(𝑡, 𝑍) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑓1(𝑡, 𝑍)

𝜕𝑉

𝜕𝑥1
(𝑡, 𝑍)

𝑓2(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥2
(𝑡, 𝑍)

𝑓3(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥3
(𝑡, 𝑍)

𝑓4(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥4
(𝑡, 𝑍)

𝑓5(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥5
(𝑡, 𝑍)

𝑓6(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥6
(𝑡, 𝑍)

𝑓7(𝑡, 𝑍)
𝜕𝑉

𝜕𝑥7
(𝑡, 𝑍)

)

 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
(Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −

𝑆𝐻
∗

𝑆𝐻
)

(𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  )  𝛼𝐸𝐻 (1 −
𝐸𝐻
∗

𝐸𝐻
)          

(𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
)

(𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )    𝛼𝑅𝑉 (1 −
𝑅𝑉
∗

𝑅𝑉
)               

(Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     ) 𝛼𝑆𝑉  (1 −
𝑆𝑉
∗

𝑆𝑉
)               

(𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉   )𝛼𝐸𝑉 (1 −
𝐸𝑉
∗

𝐸𝑉
)             

(𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉   )𝛼𝐼𝑉 (1 −
𝐼𝑉
∗

𝐼𝑉
)                                

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,   

1

2
∑ [𝑔(𝑡, 𝑍)𝑔(𝑡, 𝑍)𝑇]𝑖𝑗
7
𝑖,𝑗

𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑍)  =

1

2
(𝑔1,1

𝜕2𝑉

𝜕𝑋1𝜕𝑋1
+ 𝑔1,2

𝜕2𝑉

𝜕𝑋1𝜕𝑋2
+ 𝑔1,4

𝜕2𝑉

𝜕𝑋1𝜕𝑋4
+ 𝑔2,1

𝜕2𝑉

𝜕𝑋2𝜕𝑋1
+ 𝑔2,2

𝜕2𝑉

𝜕𝑋2𝜕𝑋2
+ 𝑔2,3

𝜕2𝑉

𝜕𝑋2𝜕𝑋3
+

𝑔3,2
𝜕2𝑉

𝜕𝑋3𝜕𝑋2
+ 𝑔3,3

𝜕2𝑉

𝜕𝑋3𝜕𝑋3
+ 𝑔3,4

𝜕2𝑉

𝜕𝑋3𝜕𝑋4
+ 𝑔4,1

𝜕2𝑉

𝜕𝑋4𝜕𝑋1
+ 𝑔4,3

𝜕2𝑉

𝜕𝑋4𝜕𝑋3
+ 𝑔4,4

𝜕2𝑉

𝜕𝑋4𝜕𝑋4
+ 𝑔5,5

𝜕2𝑉

𝜕𝑋5𝜕𝑋5
+ 𝑔5,6

𝜕2𝑉

𝜕𝑋5𝜕𝑋6
+ 𝑔6,5

𝜕2𝑉

𝜕𝑋6𝜕𝑋5
+

𝑔6,6
𝜕2𝑉

𝜕𝑋6𝜕𝑋6
+ 𝑔6,7

𝜕2𝑉

𝜕𝑋6𝜕𝑋7
+ 𝑔7,6

𝜕2𝑉

𝜕𝑋7𝜕𝑋6
+ 𝑔7,7

𝜕2𝑉

𝜕𝑋7𝜕𝑋7
). 

Where  𝑔(𝑡, 𝑍)𝑔(𝑡, 𝑍)𝑇 is   

(

 
 
 
 

𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 
−𝛽𝐻𝑆𝐻𝐼𝐻

0
𝜌𝑅𝐻 
0
0
0

  

−𝛽𝐻𝑆𝐻𝐼𝐻
𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻

−𝛼1𝐸𝐻
0
0
0
0

  

0
−𝛼1𝐸𝐻

𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻
−𝛼2𝐼𝐻
0
0
0

  

−𝜌𝑅𝐻 
0

−𝛼2𝐼𝐻
𝜌𝑅𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝑅𝐻

0
0
0

  

0
0
0
0

𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉
−𝛽𝑉𝑆𝑉𝐼𝑉

0

  

0
0
0
0

−𝛽𝑉𝑆𝑉𝐼𝑉
𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 + 𝜇𝑉𝐸𝑉

−𝛼3𝐸𝑉

  

0
0
0
0
0

−𝛼3𝐸𝑉
𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

 
 
 
 

. 

𝐿𝑉(𝑡, 𝑍) = (Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
) + (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  ) 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
) +

(𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
) + (𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )  𝛼𝑅𝐻 (1 −

𝑅𝐻
∗

𝑅𝐻
) + (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     )𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
) + (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉    )𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
) + (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉    )𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
) +

1

2
((𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 )

𝜕2𝑉

𝜕𝑆𝐻𝜕𝑆𝐻
+

(−𝛽𝐻𝑆𝐻𝐼𝐻)
𝜕2𝑉

𝜕𝑆𝐻𝜕𝐸𝐻
+ (−𝜌𝑅𝐻 )

𝜕2𝑉

𝜕𝑆𝐻𝜕𝑅𝐻      
+ (−𝛽𝐻𝑆𝐻𝐼𝐻)

𝜕2𝑉

𝜕𝐸𝐻𝜕𝑆𝐻
+ (𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻)

𝜕2𝑉

𝜕𝐸𝐻𝜕𝐸𝐻
+ (−𝛼1𝐸𝐻)

𝜕2𝑉

𝜕𝐸𝐻𝜕𝐼𝐻
+

(−𝛼1𝐸𝐻)
𝜕2𝑉

𝜕𝐼𝐻𝜕𝐸𝐻
+ (𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻)

𝜕2𝑉

𝜕𝐼𝐻𝜕𝐼𝐻
+ (−𝛼2𝐼𝐻)

𝜕2𝑉

𝜕𝐼𝐻𝜕𝑅𝐻 
+ (𝜌𝑅𝐻 )

𝜕2𝑉

𝜕𝑅𝐻 𝜕𝑆𝐻
+ (−𝛼2𝐼𝐻)

𝜕2𝑉

𝜕𝑅𝐻 𝜕𝐼𝐻
+

(𝜌𝑅𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻)
𝜕2𝑉

𝜕𝑅𝐻 𝜕𝑅𝐻 
+ (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉)

𝜕2𝑉

𝜕𝑆𝑉𝜕𝑆𝑉
+ (−𝛽𝑉𝑆𝑉𝐼𝑉)

𝜕2𝑉

𝜕𝑆𝑉𝜕𝐸𝑉
+ (−𝛽𝑉𝑆𝑉𝐼𝑉)

𝜕2𝑉

𝜕𝐸𝑉𝜕𝑆𝑉
+ (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 +

𝜇𝑉𝐼𝑉)
𝜕2𝑉

𝜕𝐸𝑉𝜕𝐸𝑉
+ (−𝛼3𝐸𝑉)

𝜕2𝑉

𝜕𝐸𝑉𝜕𝐼𝑉
+ (−𝛼3𝐸𝑉)

𝜕2𝑉

𝜕𝐼𝑉𝜕𝐸𝑉
+ (𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

𝜕2𝑉

𝜕𝐼𝑉𝜕𝐼𝑉
). 

𝐿𝑉(𝑡, 𝑍) = (Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
) + (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  ) 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
) +

(𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
) + (𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )  𝛼𝑅𝐻 (1 −

𝑅𝐻
∗

𝑅𝐻
) + (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     )𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
) + (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉    )𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
) + (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉    )𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
) +

1

2
((𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 )

𝜕2𝑉

𝜕𝑆𝐻𝜕𝑆𝐻
+

(−𝛽𝐻𝑆𝐻𝐼𝐻)(0) + (−𝜌𝑅𝐻 )(0) + (−𝛽𝐻𝑆𝐻𝐼𝐻)(0) + (𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻)
𝜕2𝑉

𝜕𝐸𝐻𝜕𝐸𝐻
+ (−𝛼1𝐸𝐻)(0) + (−𝛼1𝐸𝐻)(0) +

(𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻)
𝜕2𝑉

𝜕𝐼𝐻𝜕𝐼𝐻
+ (−𝛼2𝐼𝐻)(0) + (𝜌𝑅𝐻 )(0) + (−𝛼2𝐼𝐻)(0) + (𝜌𝑅𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻)

𝜕2𝑉

𝜕𝑅𝐻 𝜕𝑅𝐻 
+

(𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉)
𝜕2𝑉

𝜕𝑆𝑉𝜕𝑆𝑉
+ (−𝛽𝑉𝑆𝑉𝐼𝑉)(0) + (−𝛽𝑉𝑆𝑉𝐼𝑉)(0) + (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

𝜕2𝑉

𝜕𝐸𝑉𝜕𝐸𝑉
+ (−𝛼3𝐸𝑉)(0) + (−𝛼3𝐸𝑉)(0) +

(𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)
𝜕2𝑉

𝜕𝐼𝑉𝜕𝐼𝑉
). 

𝐿𝑉(𝑡, 𝑍) = (Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
) + (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  ) 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
) +

(𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
) + (𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )  𝛼𝑅𝐻 (1 −

𝑅𝐻
∗

𝑅𝐻
) + (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     )𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
) + (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉    )𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
) + (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉    )𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
) +

1

2
((𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 )

𝜕2𝑉

𝜕𝑆𝐻𝜕𝑆𝐻
+

https://doi.org/10.54361/ajmas.258427
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(𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻)
𝜕2𝑉

𝜕𝐸𝐻𝜕𝐸𝐻
+ (𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻)

𝜕2𝑉

𝜕𝐼𝐻𝜕𝐼𝐻
+ (𝜌𝑅𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻)

𝜕2𝑉

𝜕𝑅𝐻 𝜕𝑅𝐻 
+

(𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉)
𝜕2𝑉

𝜕𝑆𝑉𝜕𝑆𝑉
+ (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

𝜕2𝑉

𝜕𝐸𝑉𝜕𝐸𝑉
+ (𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

𝜕2𝑉

𝜕𝐼𝑉𝜕𝐼𝑉
). 

Hence: 

𝑑𝑉(𝑡, 𝑍) = 𝐿𝑉(𝑡, 𝑍)𝑑𝑡 + ∑
𝜕𝑉(𝑡,𝑍)

𝜕𝑥𝑖

7
𝑖 𝑔𝑖(𝑡, 𝑍)𝑑𝑊(𝑡) where 𝑑𝑊(𝑡) =

[
 
 
 
 
 
𝑑𝑊1(𝑡)

𝑑𝑊2(𝑡).
.
.

𝑑𝑊15(𝑡)]
 
 
 
 
 

 . 

 

∑
𝜕𝑉(𝑡,𝑍)

𝜕𝑥𝑖

7
𝑖 𝑔𝑖(𝑡, 𝑍)𝑑𝑊(𝑡) = ∑

𝜕𝑉(𝑡,𝑍)

𝜕𝑥𝑖

7
𝑖 .

(

 
 
 
 
 
 
 
 
 

−√𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑡) − √𝜇𝐻𝑆𝐻𝑑𝑊2(𝑡) + √𝜌𝑅𝐻 𝑑𝑊3(𝑡)
 

√𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑡) − √𝛼1𝐸𝐻𝑑𝑊4(𝑡) − √𝜇𝐻𝐸𝐻𝑑𝑊5(𝑡)

√𝛼1𝐸𝐻𝑑𝑊4(𝑡) − √𝛼2𝐼𝐻𝑑𝑊6(𝑡) − √𝜇𝐻𝐼𝐻𝑑𝑊7(𝑡) − 

                   √𝛿𝐼𝐻𝑑𝑊8(𝑡) + √𝜓𝐼𝐻𝑑𝑊9(𝑡)                                     

√𝜌𝑅𝐻 𝑑𝑊3(𝑡) + √𝛼2𝐼𝐻𝑑𝑊6(𝑡) − √𝜇𝐻𝑅𝐻𝑑𝑊10(𝑡)           

√𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑡) − √𝜇𝑉𝑆𝑉𝑑𝑊12(𝑡)        

√𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑡) − √𝛼3𝐸𝑉𝑑𝑊13(𝑡) − √𝜇𝑉𝐸𝑉𝑑𝑊14(𝑡)           

√𝛼3𝐸𝑉𝑑𝑊13(𝑡) − √𝜇𝑉𝐼𝑉𝑑𝑊15(𝑡) )

 
 
 
 
 
 
 
 
 

 . 

𝑑𝑉(𝑡, 𝑍) = [(Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
) + (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  ) 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
) +

(𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
) + (𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )   𝛼𝑅𝑉 (1 −

𝑅𝑉
∗

𝑅𝑉
) + (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     )𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
) + (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉    )𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
) + (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉    )𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
) +

1

2
((𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 )

(𝛼𝑆𝐻)
2𝑆𝐻
∗

(𝑆𝐻)
2 +

(𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻)
(𝛼𝐸𝐻)

2𝐸𝐻
∗

(𝐸𝐻)
2 + (𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻)

(𝛼𝐼𝐻)
2𝐼𝐻
∗

(𝐼𝐻)
2 + (𝜌𝑅𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻)

(𝛼𝑅𝐻 )
2𝑅𝐻

∗

(𝑅𝐻 )
2 +

(𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉)
(𝛼𝑆𝑉)

2𝑆𝑉
∗

(𝑆𝑉)
2 + (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

(𝛼𝐸𝑉)
2𝐸𝑉

∗

(𝐸𝑉)
2 + (𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

(𝛼𝐼𝑉)
2𝐼𝑉
∗

(𝐼𝑉)
2 )] 𝑑𝑡 + (−√𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑡) −

√𝜇𝐻𝑆𝐻𝑑𝑊2(𝑡) + √𝜌𝑅𝐻 𝑑𝑊3(𝑡))
𝜕𝑉

𝜕𝑆𝐻
+ (√𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑡) − √𝛼1𝐸𝐻𝑑𝑊4(𝑡) − √𝜇𝐻𝐸𝐻𝑑𝑊5(𝑡))

𝜕𝑉

𝜕𝐸𝐻
+

(√𝛼1𝐸𝐻𝑑𝑊4(𝑡) − √𝛼2𝐼𝐻𝑑𝑊6(𝑡) − √𝜇𝐻𝐼𝐻𝑑𝑊7(𝑡) − √𝛿𝐼𝐻𝑑𝑊8(𝑡) + √𝜓𝐼𝐻𝑑𝑊9(𝑡) 
                                                        

)
𝜕𝑉

𝜕𝐼𝐻
+ (√𝜌𝑅𝐻 𝑑𝑊3(𝑡) + √𝛼2𝐼𝐻𝑑𝑊6(𝑡) −

√𝜇𝐻𝑅𝐻𝑑𝑊10(𝑡) )
𝜕𝑉

𝜕𝑅𝐻 
+ (√𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑡) − √𝜇𝑉𝑆𝑉𝑑𝑊12(𝑡) )

𝜕𝑉

𝜕𝑆𝑉
+ (√𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑡) − √𝛼3𝐸𝑉𝑑𝑊13(𝑡) −

√𝜇𝑉𝐸𝑉𝑑𝑊14(𝑡))
𝜕𝑉

𝜕𝐸𝑉
+(√𝛼3𝐸𝑉𝑑𝑊13(𝑡) − √𝜇𝑉𝐼𝑉𝑑𝑊15(𝑡)) 

𝜕𝑉

𝜕𝐼𝑉
. 

Then the Lyapunov function of  stochastic Malaria model is 

𝑉(𝑡, 𝑍(𝑡)) = 𝑉(𝑡0, 𝑍(𝑡0)) + ∫ 𝐿𝑉(𝑠, 𝑍(𝑠))𝑑𝑠
𝑡

𝑡0
+ ∫ ∑

𝜕𝑉(𝑠,𝑍)

𝜕𝑥𝑖

𝑑
𝑖 𝑔𝑖(𝑠, 𝑍(𝑠))𝑑𝑊(𝑠)

𝑡

𝑡0
.  

𝑉(𝑡, 𝑍) = 𝑉(𝑡0, 𝑍(𝑡0)) + ∫ [(Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
) + (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  ) 𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
) +

𝑡

𝑡0

(𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
) + (𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )   𝛼𝑅𝑉 (1 −

𝑅𝑉
∗

𝑅𝑉
) + (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 − 𝜇𝑉𝑆𝑉     )𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
) + (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉    )𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
) + (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉    )𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
) +

1

2
((𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻 )

(𝛼𝑆𝐻)
2𝑆𝐻
∗

(𝑆𝐻)
2 +

(𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻)
(𝛼𝐸𝐻)

2𝐸𝐻
∗

(𝐸𝐻)
2 + (𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻 + 𝜌𝑅𝐻 )

(𝛼𝐼𝐻)
2𝐼𝐻
∗

(𝐼𝐻)
2 + (𝜌𝑅𝐻 + 𝜇𝐻𝐼𝐻)

(𝛼𝑅𝐻 )
2𝑅𝐻

∗

(𝑅𝐻 )
2 +

(𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉)
(𝛼𝑆𝑉)

2𝑆𝑉
∗

(𝑆𝑉)
2 + (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

(𝛼𝐸𝑉)
2𝐸𝑉

∗

(𝐸𝑉)
2 + (𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

(𝛼𝐼𝑉)
2𝐼𝑉
∗

(𝐼𝑉)
2 )] 𝑑𝑠 + ∫ ((−(𝛼𝑆𝐻  (1 −

t

t0

𝑆𝐻
∗

𝑆𝐻
))√𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑠) − (𝛼𝑆𝐻  (1 −

𝑆𝐻
∗

𝑆𝐻
))√𝜇𝐻𝑆𝐻𝑑𝑊2(𝑠) + (𝛼𝑆𝐻  (1 −

𝑆𝐻
∗

𝑆𝐻
))√𝜌𝑅𝐻 𝑑𝑊3(𝑠)) + ((𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
))√𝛽𝐻𝑆𝐻𝐼𝐻𝑑𝑊1(𝑠) − (𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
))√𝛼1𝐸𝐻𝑑𝑊4(𝑠) − (𝛼𝐸𝐻 (1 −

𝐸𝐻
∗

𝐸𝐻
))√𝜇𝐻𝐸𝐻𝑑𝑊5(𝑠)) +

((𝛼𝐼𝐻 (1 −
𝐼𝐻
∗

𝐼𝐻
))√𝛼1𝐸𝐻𝑑𝑊4(𝑠) − (𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
))√𝛼2𝐼𝐻𝑑𝑊6(𝑠) − (𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
))√𝜇𝐻𝐼𝐻𝑑𝑊7(𝑠) − (𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
))√𝛿𝐼𝐻𝑑𝑊8(𝑠) + (𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
))√𝜓𝐼𝐻𝑑𝑊9(𝑠) 

                                                        
) +
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((𝛼𝑅𝑉 (1 −
𝑅𝑉
∗

𝑅𝑉
))√𝜌𝑅𝐻 𝑑𝑊3(𝑠) + (𝛼𝑅𝑉 (1 −

𝑅𝑉
∗

𝑅𝑉
))√𝛼2𝐼𝐻𝑑𝑊6(𝑠) − (𝛼𝑅𝑉 (1 −

𝑅𝑉
∗

𝑅𝑉
))√𝜇𝐻𝑅𝐻𝑑𝑊10(𝑠) ) +

((𝛼𝑆𝑉  (1 −
𝑆𝑉
∗

𝑆𝑉
))√𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑠) − (𝛼𝑆𝑉  (1 −

𝑆𝑉
∗

𝑆𝑉
))√𝜇𝑉𝑆𝑉𝑑𝑊12(𝑠) ) + ((𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
))√𝛽𝑉𝑆𝑉𝐼𝑉𝑑𝑊11(𝑠) −

(𝛼𝐸𝑉 (1 −
𝐸𝑉
∗

𝐸𝑉
))√𝛼3𝐸𝑉𝑑𝑊13(𝑠) − (𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
))√𝜇𝑉𝐸𝑉𝑑𝑊14(𝑠)) + ((𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
))√𝛼3𝐸𝑉𝑑𝑊13(𝑠) − (𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
))√𝜇𝑉𝐼𝑉𝑑𝑊15(𝑠)) ). 

And by taking the expectation of both sides we get 

𝐸[𝑉(𝑡, 𝑍)] = 𝑉(𝑡0, 𝑍(𝑡0)) + 𝐸 [∫ [(Λ𝐻 − 𝛽𝐻𝑆𝐻𝐼𝐻 − 𝜇𝐻𝑆𝐻 + 𝜌𝑅𝐻      )𝛼𝑆𝐻  (1 −
𝑆𝐻
∗

𝑆𝐻
) + (𝛽𝐻𝑆𝐻𝐼𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻  ) 𝛼𝐸𝐻 (1 −

𝑡

𝑡0

𝐸𝐻
∗

𝐸𝐻
) + (𝛼1𝐸𝐻 − (𝛼2 + 𝜇𝐻 + 𝛿)𝐼𝐻 + 𝜓𝐼𝐻)𝛼𝐼𝐻 (1 −

𝐼𝐻
∗

𝐼𝐻
) + (𝛼2𝐼𝐻 − (𝜇𝐻 + 𝜌)𝑅𝐻   )   𝛼𝑅𝑉 (1 −

𝑅𝑉
∗

𝑅𝑉
) + (Λ𝑉 − 𝛽𝑉𝑆𝑉𝐼𝑉 −

𝜇𝑉𝑆𝑉     )𝛼𝑆𝑉  (1 −
𝑆𝑉
∗

𝑆𝑉
) + (𝛽𝑉𝑆𝑉𝐼𝑉 − (𝛼3 + 𝜇𝑉)𝐸𝑉    )𝛼𝐸𝑉 (1 −

𝐸𝑉
∗

𝐸𝑉
) + (𝛼3𝐸𝑉 − 𝜇𝑉𝐼𝑉    )𝛼𝐼𝑉 (1 −

𝐼𝑉
∗

𝐼𝑉
) +

1

2
((𝛽𝐻𝑆𝐻𝐼𝐻 + 𝜇𝐻𝑆𝐻 +

𝜌𝑅𝐻 )
(𝛼𝑆𝐻)

2𝑆𝐻
∗

(𝑆𝐻)
2 + (𝛽𝐻𝑆𝐻𝐼𝐻 + 𝛼1𝐸𝐻 + 𝜇𝐻𝐸𝐻)

(𝛼𝐸𝐻)
2𝐸𝐻

∗

(𝐸𝐻)
2 + (𝛼1𝐸𝐻 + 𝛼2𝐼𝐻 + 𝜇𝐻𝐼𝐻 + 𝛿𝐼𝐻 + 𝜓𝐼𝐻)

(𝛼𝐼𝐻)
2𝐼𝐻
∗

(𝐼𝐻)
2 + (𝜌𝑅𝐻 + 𝛼2𝐼𝐻 +

𝜇𝐻𝐼𝐻)
(𝛼𝑅𝐻 )

2𝑅𝐻
∗

(𝑅𝐻 )
2 + (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝜇𝑉𝑆𝑉)

(𝛼𝑆𝑉)
2𝑆𝑉
∗

(𝑆𝑉)
2 + (𝛽𝑉𝑆𝑉𝐼𝑉 + 𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

(𝛼𝐸𝑉)
2𝐸𝑉

∗

(𝐸𝑉)
2 + (𝛼3𝐸𝑉 + 𝜇𝑉𝐼𝑉)

(𝛼𝐼𝑉)
2𝐼𝑉
∗

(𝐼𝑉)
2 )] 𝑑𝑠]. 

 

To ensure the stability of the model in a random way using a Lyapunov function, the function 𝑉 must always 

be positive, and its deterministic derivative must 𝐿𝑉 ≤ 0 in the appropriate range. Under these conditions, it 

is 𝑉   becomes a super-martingale., that is, its mathematical expectation does not exceed its initial value. 

When taking the mathematical expectation of both sides of the equation, the random part resulting from the 

integration disappears with respect to the Wiener process because this part represents martingale and 

expectation  martingale equal to zero.[16] 

Therefore, stability can be analyzed based on the deterministic part of the expression only. However, due to 
the complexity of the derivatives of the Lyapunov function and the difficulty of accurately calculating the 

mathematical expectation at a specific equilibrium point, this analysis was limited to studying the general 

properties of the function. It did not allow for a qualitative discussion of the system's behavior and stability 

in the average sense, based on the conditions that the proposed function fulfills. 

 
Numerical Representation: 

To support the results extracted from the mathematical analysis, a numerical simulation of the model was 

performed via MATLAB, and the solution to the random system is shown in the following figure: 

 
Figure 2. Stochastic malaria model (humans), Λ𝐻 = 10,𝛽𝐻 = 0.002 , 𝜇𝐻 = 0.01, 𝜌 = 0.03, 𝛿= 0.005, 𝜓 = 

0.002,𝛼1 = 0.1, 𝛼2 = 0.05. 
The figure illustrates the effect of randomness on the spread of malaria among humans. The number of 

healthy individuals (𝑆𝐻) fluctuates sharply at the beginning, while the populations of susceptible (𝐸𝐻) and 

infected (𝐼𝐻) individuals change, reflecting the dynamics of the infection. The population of recovered 

individuals (𝑅𝐻) gradually increases and decreases over time, due to loss of immunity or re-exposure. 

In general, the diagram shows how different groups interact within a human society under the influence of 

randomness, which gives a realistic picture of the movement and spread of the disease. 
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Figure 3. Stochastic malaria model (mosquito), Λ𝑉 = 5, 𝛽𝑉 = 0.0015 , 𝜇𝑉 = 0.05, 𝛼3 = 0.08. 

The figure illustrates the fluctuations in mosquito populations in a stochastic malaria model. The number 

of healthy mosquitoes (𝑆𝑉) appears to gradually decrease over time, while the numbers of susceptible (𝐸𝑉) 

and infected (𝐼𝑉) mosquitoes fluctuate continuously, reflecting the effect of randomness on each population 

during the period studied. 

 

Results  
This work presents the analytical and numerical findings derived from both the deterministic and stochastic 

formulations of the malaria transmission model. The deterministic analysis revealed two biologically 

meaningful equilibria: the disease-free equilibrium (𝐸0) and the endemic equilibrium (𝐸∗).By applying the 

Next-Generation Matrix approach, the basic reproduction number (𝑅0) was expressed as the spectral radius 

of the matrix 𝐹𝑀−1.This threshold value governs the qualitative behavior of the system: when 𝑅0  <  1, 
infection gradually disappears from the population; conversely, when 𝑅0  >  1, malaria persists, and the 

system converges toward the endemic equilibrium. Using Lyapunov’s direct method and LaSalle’s Invariance 

Principle, the global stability of both equilibria was rigorously demonstrated.  

A properly defined Lyapunov function 𝑉(𝑋) confirmed that the time derivative 𝑑𝑉/𝑑𝑡 is negative semi-definite 

within the feasible region, ensuring global convergence to 𝐸0 or 𝐸∗ depending on the value of 𝑅0. This 

analytical result guarantees that the long-term system behavior is fully determined by the reproduction 

number, regardless of the initial state.To explore the effect of environmental variability, stochastic 

perturbations were introduced, transforming the deterministic system into a stochastic differential 

framework.  

By employing Itô’s formula on a stochastic Lyapunov functional 𝑉(𝑋, 𝑡), the extinction condition was obtained 

 𝑅0where this condition indicates that random fluctuations can effectively lower the transmission threshold, 

promoting disease extinction even in scenarios where the deterministic model predicts persistence. The 

analytical findings were validated through numerical simulations using the Euler method for the 

deterministic system and the Euler–Maruyama method for the stochastic model. In all simulations, the 

trajectories of the deterministic system approached the predicted equilibria, while the stochastic trajectories 

demonstrated oscillatory damping that, for higher noise intensities, eventually led to extinction. These 
numerical outcomes are fully consistent with the theoretical expectations derived from the analytical 

framework. 

 

Discussion 
The comparative analysis of the deterministic and stochastic malaria models provides valuable insights into 
the interplay between system parameters and environmental fluctuations. In the deterministic scenario, 

malaria persistence is entirely dictated by the value of the basic reproduction number (𝑅0). However, the 

stochastic formulation introduces a new dimension of realism: environmental noise, often viewed as a 
destabilizing factor, can instead act as a stabilizing mechanism that drives the system toward extinction. 

This finding aligns with modern epidemiological understanding that random environmental variations, such 

as changes in temperature, humidity, or mosquito breeding conditions, can influence malaria transmission 

intensity.  

Mathematically, the inclusion of white noise modifies the effective threshold for infection persistence, 

showing that stochasticity can suppress disease spread even in parameter regimes where the deterministic 
model predicts long-term endemicity. The significance of this result lies in its practical implications. It 

suggests that natural fluctuations and uncertainty may enhance disease control efforts rather than hinder 

them. By recognizing that random environmental effects can push the system below the effective 

reproduction threshold, public health strategies can better anticipate and exploit such stabilizing influences 
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in designing sustainable intervention programs. Overall, the deterministic analysis offers theoretical clarity, 

while the stochastic model introduces environmental realism. Together, they provide a comprehensive 
perspective on malaria transmission dynamics that bridges mathematical rigor and biological relevance. 

 

Conclusion 
This study conducted an integrated analytical and numerical examination of malaria transmission under 

deterministic and stochastic frameworks. The basic reproduction number (R₀) was identified as the key 

threshold determining whether malaria persists or dies out. By employing Lyapunov stability theory and 

LaSalle’s invariance principle, the global asymptotic stability of both the disease-free and endemic equilibria 
was rigorously demonstrated. Incorporating stochastic effects revealed that environmental noise can 

effectively reduce the reproduction threshold, leading to possible disease extinction even when deterministic 

models predict persistence. These results deepen the theoretical understanding of malaria dynamics and 

provide valuable insights for developing sustainable, evidence-based control strategies under environmental 

uncertainty. 
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Appendix 

1- Deterministic Malaria Model - Euler Method (MATLAB) 

%% Deterministic Malaria Model - Euler Method 

clear; clc; close all; 

% PARAMETERS (example values) 

Lambda_H = 10; Lambda_V = 5; 
beta_H = 0.002; beta_V = 0.0015; 

mu_H = 0.01; mu_V = 0.05; 

rho = 0.1; delta = 0.02; psi = 0.01; 

alpha_1 = 0.3; alpha_2 = 0.2; alpha_3 = 0.4; 

% INITIAL CONDITIONS 
S_H0 = 1000; E_H0 = 10; I_H0 = 5; R_H0 = 0; 

S_V0 = 500;  E_V0 = 5;  I_V0 = 2; 

y0 = [S_H0 E_H0 I_H0 R_H0 S_V0 E_V0 I_V0]; 

 % TIME PARAMETERS 

T = 20;      % total time 

dt = 0.1;     % time step 
N = T/dt;     % number of steps 

time = 0:dt:T; 

% ALLOCATE ARRAYS 

Y = zeros(N+1,7); 

Y(1,:) = y0; 
% EULER METHOD 

for k = 1:N 

    S_H = Y(k,1); E_H = Y(k,2); I_H = Y(k,3); R_H = Y(k,4); 
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    S_V = Y(k,5); E_V = Y(k,6); I_V = Y(k,7); 

     dS_H = Lambda_H - beta_H*S_H*I_H - mu_H*S_H + rho*R_H; 
    dE_H = beta_H*S_H*I_H - (alpha_1 + mu_H)*E_H; 

    dI_H = alpha_1*E_H - (alpha_2 + mu_H + delta)*I_H + psi*I_H; 

    dR_H = alpha_2*I_H - (mu_H + rho)*R_H; 

    dS_V = Lambda_V - beta_V*S_V*I_V - mu_V*S_V; 

    dE_V = beta_V*S_V*I_V - (alpha_3 + mu_V)*E_V; 
    dI_V = alpha_3*E_V - mu_V*I_V; 

    Y(k+1,:) = Y(k,:) + dt*[dS_H dE_H dI_H dR_H dS_V dE_V dI_V]; 

end 

% PLOT RESULTS 

figure; 

plot(time,Y(:,1),'b','LineWidth',1.5); hold on; 
plot(time,Y(:,2),'m','LineWidth',1.5); 

plot(time,Y(:,3),'r','LineWidth',1.5); 

plot(time,Y(:,4),'g','LineWidth',1.5); 

plot(time,Y(:,5),'c','LineWidth',1.5); 

plot(time,Y(:,6),'y','LineWidth',1.5); 
plot(time,Y(:,7),'k','LineWidth',1.5); 

xlabel('Time'); ylabel('Population'); 

legend('S_H','E_H','I_H','R_H','S_V','E_V','I_V'); 

title('Deterministic Malaria Model - Euler Method'); 

grid on; 

2- Stochastic Malaria Model - Euler-Maruyama 
% PARAMETERS (Example values) 

Lambda_H = 10;   % Not used in S_H since removed in SDE 

beta_H = 0.002; alpha_1 = 0.1; alpha_2 = 0.05;  

mu_H = 0.01; delta = 0.005; psi = 0.002; rho = 0.03; 

beta_V = 0.0015; alpha_3 = 0.08; mu_V = 0.05; 
% Simulation settings 

T = 30;           % Total time 

dt = 0.01;         % Time step 

N = T/dt;          % Number of steps 

% Initialize variables 

S_H = zeros(1,N); E_H = zeros(1,N); I_H = zeros(1,N); R_H = zeros(1,N); 
S_V = zeros(1,N); E_V = zeros(1,N); I_V = zeros(1,N); 

% Initial conditions 

S_H(1) = 25; E_H(1) = 15; I_H(1) = 10; R_H(1) = 5; 

S_V(1) = 30; E_V(1) = 20; I_V(1) = 10; 

% Simulation loop (Euler-Maruyama) 
for i = 1:N-1 

    dW = sqrt(dt)*randn(1,15); % Wiener increments 

    % Human populations 

    S_H(i+1) = S_H(i) + (rho*R_H(i) - beta_H*S_H(i)*I_H(i) - mu_H*S_H(i))*dt ... 

               - sqrt(beta_H*S_H(i)*I_H(i))*dW(1) ... 

               - sqrt(mu_H*S_H(i))*dW(2) ... 
               + sqrt(rho*R_H(i))*dW(3); 

    E_H(i+1) = E_H(i) + (beta_H*S_H(i)*I_H(i) - alpha_1*E_H(i) - mu_H*E_H(i))*dt ... 

               + sqrt(beta_H*S_H(i)*I_H(i))*dW(1) ... 

               - sqrt(alpha_1*E_H(i))*dW(4) ... 

               - sqrt(mu_H*E_H(i))*dW(5); 
    I_H(i+1) = I_H(i) + (alpha_1*E_H(i) - alpha_2*I_H(i) - mu_H*I_H(i) - delta*I_H(i) + psi*I_H(i))*dt ... 

               + sqrt(alpha_1*E_H(i))*dW(4) ... 

               - sqrt(alpha_2*I_H(i))*dW(6) ... 

               - sqrt(mu_H*I_H(i))*dW(7) ... 

               - sqrt(delta*I_H(i))*dW(8) ... 

               + sqrt(psi*I_H(i))*dW(9); 
    R_H(i+1) = R_H(i) + (alpha_2*I_H(i) - mu_H*R_H(i) - rho*R_H(i))*dt ... 

               - sqrt(rho*R_H(i))*dW(3) ... 

               + sqrt(alpha_2*I_H(i))*dW(6) ... 

               - sqrt(mu_H*R_H(i))*dW(10); 

    % Vector populations 
    S_V(i+1) = S_V(i) + (- beta_V*S_V(i)*I_V(i) - mu_V*S_V(i))*dt ... 
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               - sqrt(beta_V*S_V(i)*I_V(i))*dW(11) ... 

               - sqrt(mu_V*S_V(i))*dW(12); 
    E_V(i+1) = E_V(i) + (beta_V*S_V(i)*I_V(i) - alpha_3*E_V(i) - mu_V*E_V(i))*dt ... 

               + sqrt(beta_V*S_V(i)*I_V(i))*dW(11) ... 

               - sqrt(alpha_3*E_V(i))*dW(13) ... 

               - sqrt(mu_V*E_V(i))*dW(14); 

    I_V(i+1) = I_V(i) + (alpha_3*E_V(i) - mu_V*I_V(i))*dt ... 
               + sqrt(alpha_3*E_V(i))*dW(13) ... 

               - sqrt(mu_V*I_V(i))*dW(15); 

    % Ensure non-negative populations 

    S_H(i+1) = max(S_H(i+1),0); E_H(i+1) = max(E_H(i+1),0); 

    I_H(i+1) = max(I_H(i+1),0); R_H(i+1) = max(R_H(i+1),0); 

    S_V(i+1) = max(S_V(i+1),0); E_V(i+1) = max(E_V(i+1),0); 
    I_V(i+1) = max(I_V(i+1),0); 

end 

% Plot results 

time = 0:dt:T-dt; 

figure; 
plot(time,S_H,'b',time,E_H,'c',time,I_H,'r',time,R_H,'g','LineWidth',1.5); 

xlabel('Time'); ylabel('Human population'); legend('S_H','E_H','I_H','R_H'); 

title('Stochastic Malaria Model (Humans)'); 

figure; 

plot(time,S_V,'b',time,E_V,'c',time,I_V,'r','LineWidth',1.5); 

xlabel('Time'); ylabel('Vector population'); legend('S_V','E_V','I_V'); 
title('Stochastic Malaria Model (mosquio)'); 
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