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Abstract

Malaria remains one of the most life-threatening infectious diseases worldwide, causing hundreds
of thousands of deaths annually, particularly among children and pregnant women in tropical and
subtropical regions. To better understand its complex transmission dynamics, this study develops
and analyzes both deterministic and stochastic mathematical models of malaria based on systems
of differential equations. The main objective of this research is to study the stability of both the
deterministic and stochastic malaria models analytically and numerically using the Lyapunov
function, the Euler method, and the Euler-Maruyama method. For the deterministic model, the
disease-free and endemic equilibrium points are derived, and their local and global stability are
investigated. Numerical simulations are conducted using the mentioned numerical methods to
demonstrate the dynamic behavior of the system. The stochastic extension of the model
incorporates random perturbations to represent environmental and demographic fluctuations that
influence disease spread. The analytical and numerical results reveal that stochastic effects
significantly influence malaria dynamics, potentially reducing disease persistence and stabilizing
the system under certain conditions. These findings provide deeper insights into malaria
transmission mechanisms and contribute to the development of more effective and evidence-based
control strategies.

Keywords. Malaria Transmission Model, Deterministic Model, Lyapunov Function, Stochastic
Model.

Introduction

Malaria presents a significant global public health challenge, responsible for hundreds of thousands of
deaths annually. It is particularly noted that young children are most at risk, accounting for the majority of
these fatalities. Studies indicate that acquired immunity to the disease develops with repeated exposure to
parasites, making it a crucial factor influencing disease transmission dynamics. Therefore, it is essential to
develop precise mathematical models to analyze these dynamics and understand the complex interplay
between levels of disease exposure, the mechanism of immunity acquisition, and the infection pathway [1].
Furthermore, malaria is a parasitic infection that is transmitted to humans by the bite of specific mosquito
species known as anophelines. The parasite must spend a portion of its existence in the mosquito, rather
than simply moving from one person to another.

Because the parasite's growth and development take almost as long as the insect's typical lifespan, life
within the mosquito is a race against time. In colder climates, this time frame is longer; as the temperature
increases, it gets shorter. Therefore, the parasite's existence is precarious, and the mosquito usually dies
before it can spread malaria once the average temperature falls below a particular threshold. This explains
why malaria poses such a serious risk to health in tropical and subtropical areas [2]. In many regions of the
world, malaria is endemic, but it is most prevalent in sub-Saharan Africa. The World Health Organization
(WHO) estimates that 229 million cases of malaria occurred globally in 2019, resulting in about 409,000
fatalities. A startling 94% of all instances and fatalities occurred in Africa, with pregnant women and children
under five being the most susceptible groups [3].

Mathematical models play a crucial role in the study of malaria transmission dynamics, having been utilized
for several decades to provide a comprehensive framework for understanding the factors influencing the
spread of this disease. Initial efforts in this area employed simple models based on ordinary differential
equations, which helped elucidate changes in the densities of infected humans and mosquitoes. As research
has progressed, these models have evolved to incorporate greater complexities, such as the latent periods
during which individuals are infected but asymptomatic, as well as the impact of vector density and the age
structure of populations. Additionally, other factors such as migration, social and economic changes, and
climatic influences have been integrated, thereby enhancing the accuracy of the modeling. These models
highlight the intricacies present in the interactions among hosts, vectors, and parasites, underscoring the
need for models that account for environmental and social diversity.

Through this comprehensive approach, mathematical models can provide valuable insights into the potential
risks of malaria transmission, facilitating the development of effective strategies for disease control [4].
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Among these, deterministic models serve as a pivotal analytical tool in the study of complex biological
systems, offering a systematic framework for understanding the interactions and dynamics of infectious
diseases. By employing systems of differential equations, these models enable the precise modeling of
disease transmission pathways and the identification of influential factors on its spread. The fundamental
role of deterministic models lies in their ability to isolate different variables and assess their impact
independently, which facilitates sensitivity analyses to pinpoint the most critical parameters in controlling
disease dynamics. Furthermore, these models provide quantifiable insights that can effectively guide the
formulation of intervention and prevention strategies, making them an indispensable tool in the field of
mathematical epidemiology [5].

However, stochastic modeling holds paramount importance in epidemiology, offering an analytical
framework that surpasses the limitations of traditional deterministic models, particularly when studying
epidemics in small populations. While deterministic models presuppose a single, predictable trajectory for
disease progression, stochastic models inherently incorporate an element of randomness. This inherent
stochasticity, whether demographic (e.g., variations in transmission or recovery rates at the individual level)
or environmental (e.g., changes in external factors), is fundamental to shaping epidemic dynamics.
Consequently, these models allow for the estimation of the probability of events (such as an outbreak) rather
than merely predicting their definitive occurrence. Their ability to capture the cumulative effect of small
random events makes them an indispensable tool for forecasting the trajectories of diseases influenced by
individual or environmental variability, thereby enhancing the accuracy of predictions and providing a more
comprehensive view of complex epidemiological phenomena [6].

A basic mathematical framework for examining the stability of dynamical systems is provided by the use of
Lyapunov functions. This approach becomes particularly significant when applied to mathematical models
of infectious diseases, as it enables the assessment of their long-term behaviors and the stability of their
equilibrium states [7]. In the context of analyzing epidemiological models, the Lyapunov function represents
a core mathematical tool for verifying the stability of systems and the accuracy of mathematical models. One
recent study utilized a stochastic Lyapunov functional analysis to evaluate a fractional model describing the
co-dynamics of both malaria and COVID-19. The study's results showed that this approach not only proves
the global stability of the system but also confirms the existence of a unique solution, which enhances the
model's reliability and provides a solid foundation for its use in biological and epidemiological applications
[8].

Building on this, the current study aims to use Lyapunov functions to analyze the stability of a stochastic
differential equations model for malaria transmission. Furthermore, the study seeks to apply numerical
methods such as Euler method and Euler-Maruyama method to simulate the model and obtain accurate
approximate solutions, thereby providing new insights into disease dynamics and contributing to the
development of more effective and evidence-based control strategies [8].

The remainder of this paper is organized as follows: Section 2 presents the formulation of the malaria
transmission model. Section 3 discusses the disease-free and endemic equilibria and derives the basic
reproduction number, and analyzes stability using the Lyapunov function and Euler method. Section 4
analyzes the stochastic version of the model and its stability using Lyapunov functions. Section 5 provides
numerical simulations based on the Euler-Maruyama method, and Section 6 concludes with the main
findings and implications. Based on the above discussion, the next section introduces the mathematical
formulation of the malaria transmission model that forms the foundation of our analysis.

Model formulation

To analyze the dynamics of malaria spread and understand the impact of different parameters on the disease
outbreak, a mathematical model based on differential equations was developed. This model allows studying
changes in the number of infected and susceptible individuals over time.

In this section, the stability of the system will be studied by calculating the basic reproduction number R,
and using the Lyapunov function and numerical analysis to evaluate the effect of different parameters on
the spread of the disease.

Here we apply the SEIR-SEI of Malaria. The model is formulated for both the human population as well as
mosquito population at time t, For humans, we divide our population into four classes: Susceptible Sy,
Exposed Ey, Infectious I, and Recovery Human Ry. And the population of the mosquitoes is divided into
three classes, namely Susceptible S, Exposed E,, and Infectious I,.

The following model shows the path of infection between humans and mosquitoes.
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ds
d_tH = Ay — BuSuly — tuSu + PRy
dE
d_tH = BuSuly — (ay + py)Ey
‘g—f = Ey — (ay + uy + 6y + Ply
dR
d_tH = azly — (ku + PRy . (1)
ds
d_tv = Ay = BySvly — uySy
dE
d_tv = PvSvly — (a3 + uy)Ey
al
d_: = azEy — uyly
Table 1. List of the parameters. [9].
Parameter Description
Ay. Recruitment rate of humans.
Ay. Recruitment rate of mosquitoes.
é. Induce the death rate of humans.
p. Loss of immunity for humans.
Y. The rate of newborns' birth with infection humans.
a;. The developing rate of exposed (humans) becoming infectious.
a,. Recovery rate of humans (removal rate).
as. The developing rate of exposed mosquitoes becoming infectious.
Uy . Natural death rate of humans.
Uy. Natural death rate of mosquitoes.
Probability of transmission of infection from an infectious mosquito
- to a susceptible human.
Probability of transmission of infection from an infectious human to
- a susceptible mosquito.
Ny- Mosquitoes biting rate.
By. Infection rate gy X n, of humans.
By . Infection rate gy X ny, mosquitoes.

Where: Sy (t) = Sy(0), Ey(t) = E4(0),14(t) = I;(0), Ry(t) = Ry (0), Sy () = Sy (0), Ey (¢) = Ey(0), Iy (¢) = I,(0).

Since all model parameters represent biologically meaningful rates such as infection weight equations,
progress equations in recovery rates, natural death rates, and death rates resulting from disease, all of these
parameters are positive.

Model analysis
Disease-Free Equilibrium (DFE):
If IH:EH=RH:IV:EV:0‘
Then Ay — BuSuly — tuSy + pRy =0 => Ay — uySy =0 = S = 2—”
H
And Ay — BySyly — tySy =0 = Ay — uySy =0 = S0 = 2—V
14
Hence, the DFE is {S9,ES, 19, RY, SO, E, 10} = (2—” 0,0,0,2—V,0,0).
H 14
After determining the disease-free point, we now move on to calculating the basic reproduction number R,
which is used to analyze the stability of this point.

Basic Reproduction Number R,,.

To calculate R, using the next generation matrix methodology, we first divide the variables into infectious
and non-infectious categories as follows:

Let X be the vector of infectious cases and Y be the vector of non-infectious cases, such that:

X = (Ey, Iy, Ey, IV)T'Y = (SH'RH'SV)T-

ﬁHSHIH _(al + I'LH)EH
0 (az + py + OIy—aEy — Ply
F(X) = S M(X) =
) BvSvly @) —(az + uy)Ey
0 pyly—azEy

The vector F(X) represents the rates of new infections, while M(X) describes the rates of transmission.
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0F, 0F OR 3Ry vy 9vy OV Ovy
O0Ey 09Iy O0Ey dly 0Ey dly OEy dly
0F, 0F, 0FR 3R v, o O O

_ dEy O0ly OEy dly _ dEy 09Iy OEy Odly
JECOY =1 ors ors o om |"OHIMEO) =150 ory ovs o

0Ey 0dly OEy E 0Ey 0ly O0Ey Odly
0F, O0F, O0F, O0F, oVy 0Vy 0Vy 0V,
JdEy O0ly O0Ey Oly 0Ey 0dly O0Ey Odly

By taking the partial derivatives of the vectors F(X) and M(X) with respect to the contagious variables, we
obtain two Jacobian matrices J(F (X)) and J(M(X)):
0 BuSy 0 0

Then J(F(X)) = 8 8 OOﬁVOSV ’

0 0 0 0

(ay + uy) 0 0 0
—a (a +ug+86)—vy 0 0
d J(M(X)) = 1 2V FH
and JE 0 0 (s +uy) 0
0 0 —Q3 Uy
(0 BulAu 0 0
Uy
0 0 0 0
J(F(DFE)) = .
o o o &
0 0 0 "OV
(ay + py) 0 00
- (ay+uy+86)—y 0 0
d J/(M(DFE)) = 1 2T HH
and J(M(DFE)) 0 0 (@ +m) O
0 0 —Q3 Uy

From the Jacobian matrix of M(X) at the disease-free state (DFE), we note that the matrix takes a (block-
diagonal) form, separating the dynamics of humans from the dynamics of mosquitoes (Ey,I,). Since there
are no connecting elements between the two masses, we can easily calculate the inverse of M by inverting
each mass separately.[10]

J(M(DFE)) =M = (MH 0 ) =M1= (Mgl 0 )

0 My 0o M;?t
M =<(a1 + py) 0 )andM =((053 + py) 0)
H T* (az +py +6) -9 v —Qaz Hy
_1 — .
My~ = det (V) adj (Vy).
(@ +pp) (g tug+5-1) ay (o + up))”
1
0
-1 _ (ay+un)
1\/11'11 - 10:1 1
(all+/4H)(az+MH+5—w) (az+up+6-1)
_1 — .
My~ = det (V) adj (V).
= e o (e i)
(as+mduy \az  (az + uy)/’
1
-1 _ (az+uy)
My = 3“_3 L
(az+uyluy fv
(a1+um) 0 00
aL 1 0 0
M- = (ar+pp)(@z+ug+6—19P)  (az+ug+6—9)
- = 1
0 0 (az+uy)
\ 0 0 @ 1
(az+uyluy  uy

Thus, we get the next generation matrix K = F.M~! and the maximum eigenvalue of this matrix is given by
the basic multiplication number R,.
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1

0 BHAH 0 0 (a1+pn) 0 00
HH a1 1 0 0
K = 0 0 0 0 (a1+up)(az+pg+6—9)  (az+ug+s-y)
o o o ) : 0
uy 0 0 (az+uy)
00 0 5 \ 0 0 a1 /
(az+uy)
a1(BHAH) BHAH 0 0 sy v
ug(ag+pug)(az+ug+6-¢)  py(az+ug+5-1p)
K= 0 0 0 0
0 0 az(ByAy) BvAy
0 0 (az+uy)(Wy)?  (uy)?
0 0

a1(BaAR) BHAH
Ky = (#H(a1+uH)(az+#H+5—1I)) #H(tlz+#H+5—1IJ)).
0

0
as(BvAv) BvAv
and Ky, = ((a3+uv)(uv)2 (uv)2>.

0 0
|Ky — Al = 0.
a1(BHAR) BuAH 1 0
(#H(a1+#H)(az+#H+5—IP) #H(dz+uH+5—¢)> - (0 /1)| = 0.
0 0
| a1(BuAH) _ BuAH
pra(ay+up)(az+pug+8-1) uy(az+uy+6—¢)| =0.
0 -1
a1 (BHAH) 2 a1(BHAH)
— = —1 = = .
(uH(oq+uH)(oz2+uH+5—w>)’1 A =0=4 =0and d, = e i oD
~R _ a1 (BuAH)
OH ™y (as+up) (@ +pp+6—)°
|K, — Al| = 0.
az(BvAy) ByAy
((a3+#v)(uv)2 (uv)2> - (:)1 g)| = 0.
0 0
|_@sBvAv) Bv Ay
(ag+uy)(uy)? wn? =0.
0 -1
as(ByAy) 32 — — — _@BvAv)
((a3+uv)(#v)2) A=A 0= 4 =0and2, (az+uy) (uy)?’
o Rao — az(ByAy)
OV T (az ) (w)?

Hence RO = 1'R0,H’ RO,V'

In infection models such as malaria, the infection passes through two species, humans and mosquitoes, so

the basic reproduction number for one cycle is the square root of the average infection rate between the two

species.

R, = \[ a1 (Budn) _aalbyiy) \/ a1(BuSg) ays)) _ J a1(Busg)-as(BvsY) '
pr(artum)(aztup+6—9) " (az+uy)(uy)? (ar+up)(az+un+8-9) (as+uyluy (a1+up)(az+un+8-1).(az+uyIuy

1- If Ry <1, the disease-free equilibrium point is stable, and disease disappears from the population.

2-If Ry > 1, the disease-free equilibrium point is unstable, allowing the disease to emerge and spread in the

community.

Due to the complexity of the analytical expression for R, and the inability to determine its sign conclusively,

it was not possible to prove the local stability of the disease-free point. Therefore, we adopted the Lyapunov

function to prove the global stability of the system, which gives an accurate result independent of the values

of R.

Stability analysis using the Lyapunov function of DFE:

We first divide the variables into two groups:

Human variables are X = {Sy, Ey4, Iy, Ry}.

Variables specific to the mosquitoes is Y = {Sy, Ey, I/ }.

According to the methodology of (Korobeinikov) and colleagues, we divide the system into two parts: the
human system F(X) and the carrier system (the mosquito) F(Y). For each part a function is volterra based
on the combination of linear and nonlinear terms [11].

das
d_tH = Ay — BuSuly — UuSu + PRy sy
dEy T Ay = BySyly — uySy
— = BuSuly — (a1 + p)Ey dEy
F(X) = dly , FY)= e BvSvly — (az + py)Ey .
FTi a By — (ag + uy + 8)Iy +Ply dly
— = a3zE, — uyl
dRy ar 3Ly viy

o axly — (uy + p)Ry
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The general form of the Volterra function can be expressed as follows:
U= Zial-<xl- —x; —x{‘ln%) s.tx; —x; — Xx; ln L>0vx; >0.

This type of Volterra function has been used because of its su1tab111ty for global stability analysis in
epidemiological models, especially in cases where the value of R, is not defined as being greater or less than
1[12-13].

In many previous studies, the shape of the Lyapunov function is chosen according to the value of R, where
simple linear or quadratic functions are used when R, < 1, while different functions are constructed when
Ry, > 1 to prove endemic stability [14].

Because the Volterra function is logarithmic in form, which guarantees its positivity for all positive values

of the variables, this formulation makes the derivative of the function negative or zero only at equilibrium,
which confirms its effectiveness in analyzing the stability of the system directly without the need to solve
differential equations explicitly. In this way, the classical theory of Volterra functions is linked to the stability
analysis of traditional epidemiological models, providing a powerful tool for assessing the dynamics of
infectious diseases.[13]

To understand how to achieve the conditions for practical Lyapunov, the work methodology was explained
step by step. This reflects the validity and soundness of the presented analysis and confirms the reliability
of the results obtained.

1- The Volterra function of F(X) is

U, (X) = ag,, (SH — Sjins ) + ag, (EH Ey — Ejln < ) +ay, (1,, I - Iglnj—f) >0V Sy, Ey Iy >0.
H

The Ry class was not included in the Volterra functlon because it does not directly contribute to the
transmission dynamics and can be represented in terms of other variables through the population
conservation relationship. Therefore, omitting it does not affect the results of the stability analysis. Rather,
it simplifies the function and preserves its analytical effectiveness.

2- The Volterra function of F(Y) is

U,(Y) = as, (5,, Sy —Spln 5V> +ag, <EV E; — Ejln ) +ay, (IV —IIn i—i) >0V Sy,Ey, I, > 0.
Proving the positivity of weights in the Lyapunov functlon.

Since the variable representing Sy healthy individuals is not a source of direct infection, we assumed that
its weight in the Lyapunov function is equal to one ag,, = 1.

Now = ag, = 1,then ag, (BySuly) = s, (BuSuly) = ap, (BuSuly) = (D (BuSuly) = ag, =1.

(BHSHIH)

a,(a1Ey) = ag,(BuSyly) = aj, (a1 Ey) = (D(BuSuly) = ap, = ﬁ
(BuSHlH) (BuSHIH)
asv(ﬁvsvlv) = a;,(Ey) = a’sv(ﬁvsvlv) =G (H g I; ) Ey) = ag, = ﬁ

BuSHI BuSHI
ag, (BySyly) = as, (BySyly) = ag,(BySyly) = (( — H))(BVSVIV) = ag, = Pusuln)

@ (ﬁ)S viy) e (ﬁ)VSVIV)
Syl SHl
a, (asEy) = ag, (BySvly) = ap,(azEy) = ﬁ(ﬁvsvlv)) =a, = ﬁ

These weights were determined from the limits responsible for transmission of infection in the system, i.e.
those that link infected and uninfected variables or between humans and mosquitoes. When choosing each
weight, we only take the limit that is critical for transmission of infection.

Now we know the overall Lyapunov function in the following form.[12]:

VX, Y) = U,(X) + U, (V).

V(X,Y) = as, (SH Sy — SHlnSH) +ag, (EH Ej — Ejln= ) +ay, <1H I — 1;;m’—’j> +ag (SV —Sp - S‘}lns—‘:> +
Iy 4 Sy
ag, (EV —E; —Ejln ) +ap, (IV Iy — IVlnI—*).
|4
We are now analyzing the stability of the disease-free point using the Lyapunov function.
- V(X,Y) = ag, (SH Sy — SHlnS”) +ag, (EH Ej — Ejln~ ) +ay, (IH I — 1,;m’—’j> + ag (SV —Sp - 5;1n5—5> +
Iy v Sy
g, (EV —E; — Ejln ) +ay, (IV —Ijin ’—‘:) > 0,YSy, Ey, Ly, Sv, Ev, Iy # S Ef I, So B I
2‘ V(X,Y) = CZSH <SH SHln ) +(ZEH (EH EH EHln ) +(Z1H (IH I IHln ) -I—(XSV (SV —5;—5;111?—‘:) +
|4
aEV (EV - E{; - E{;lni_‘:) + aIV (IV - V - I;lni—‘:) = O,VSH,SV > 0, EH!IH' Ev, IV = 0, a; >0 ;SH'SV = S;I,S;.
v |4
After forming the Lyapunov function, we now move to its derivative with respect to time to study its change
at the disease-free point.
3-V(X,Y) = VU,(X).F(X) + VU,(Y).F(Y).
VUL(X).F(X) = ag, (SH —Si — Spln _)ﬂ +ag, (EH Eq — Epln EH) L 4 Ay (IH Iy — I n;—H)
H

Ey

dI_H

dt ’

VU,(Y).F(Y) = as, (sV —S;—S;n —)dﬂ+ g, <EV —E; — Ejln E—)"ﬂ+ G (IV - n%)dﬂ.
\%4 14

dat
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:V(X,Y)=a5H<SH—SH Siln )dSH+aEH<EH E}, — Ejln )dEH+a,H(I —I; - In I>dIH+aSV(SV—S{}—
H

Ey
ds dE dl
SV SV) d_tV + (IEV (EV - EV EV ) 4 + OlIV ([V I [Vl IV> dl"/
Si\ dS Ep\ dE dl Sy dS Ey dE
= VX.Y) = as, ( ‘ﬁ)d—f”w( ‘i)d—t””m( ~ ) ag, (1- ) T v a, (1- 1) S v e, (1 -

dIV
IV) dt”’
We now substitute the values of the variables at the disease-free state, i.e. at the infection-free equilibrium
point, into the derivative of the Lyapunov function (;ﬁ, 0,0,0,%, 0,0).
H 14

= V06 = @ (1= ) S @ (1= 2) G () (1- 2) G+ (Gians) (- )+ (G- ) (1
@)dﬂ + ((b’HSHIH)) (1 _@)dﬂ

Ey/ dt (azEy) Iy/ ac’

- g* - ¢* dEy _ dly _ dEy _ dly _
AtPFE Sy = Sp,Sv = Syand == T5= 5= 20=0.
— VX, Y) = 0.

Since we know the Lyapunov function of the system and have obtained its derivatives, we now resort to
Lasalle's principle to determine whether the system at the point is radically stable or not.

We have shown that the function V > 0 for all points outside the disease-free point, that V = 0 at the disease-
free point, and that its time derivative isV < 0. Then based on Lassalle's principle, we can conclude that the
disease-free point is globally stable.

Now, we now turn to the study of the endemic point to evaluate the stability of the system in the presence
of disease in the population.

Endemic Equilibrium (EE):

ds (Ag+pRH)
d—f =0= Ay = BuSuly — unSy + pRy = 0= Sy = (B:IHWZ)
dE BuSkl
d—tH =0= BySuly — (a1 + uy)Ey =0 = Ey = ((Z:;:)
dly _ _ - —_ *Eu
dth =0= a,Ey — (az + uy + )y + Iy =0 ? Iy = (az+up+8—1)
a
d—tH =0=aly— Wy +p)Rp=0=Ry = _(mjjo)'
dSy Ay
BY — 0 = Ay — BySyly —uySy =0 = S = —L__
ddt 0 v = BrSvly = wySy =0 Sv (ﬁVII;V+HV)
E syl
d_tV =0=BySvly — (as + wy)Ey =0 = Ey = (a‘;:;::)
dly azEy

E—O$Q3EV lev—o:lv—u

Therefore EE = {S;, Efy, Ii;, Ry, Sy, Ev, I3 }.
{(AH+PRH) BuStly aiEq azly Ay BvSyly 0‘351*/}
Bulg+em)’ (@r+up)’ (az+ug+5—9)’ (ug+p)’ Bvip+uy)’ (as+uy)’ py )’

Stability analysis using the Lyapunov function of EE:

Similar to what was done in the case of the DFE point, we now apply the Lyapunov function to the endemic
point to analyze the behavior of the system around it.

V(X,Y) = U (X) + Uy(Y).

VX Y) = ag, (SH _sh s,f,lns—i') + ag, (EH _ B - E;,lnE—’j) ta (1,, I - 1;;ln’—i’> + a (sv _sp - s;lns—f) +
SH Ey H Iy v Sy
aEV (EV Evln ) + aIV <1V - I]; - I];ln ;_‘:).
v
We are now analyzmg the stability of the endemic point using the Lyapunov function.
1- V(X,Y) = as, (SH Sy — SHlnSH) +ag, (EH Ej — Ejln ) +ay, (1,, I — 1;;ln’—i’> +ag (SV —S; - S;Ins—f) +
Iy v Sy

aEV (EV Evln ) + aIV <1V IV - Ivln_‘,;> > 0, VSH, EH, IH’SVl Ev, IV i SITI' E;I' Ilfl' S‘;, E{;, I;.

2-  VX,Y) =ag, (SH Sy —SHlnSH) + ag, (EH E}f — EHln ) + ay, (IH If — IHln ) + as, (SV Sy —Sy ni—V) +
v

aEV (EV Evln ) + aIV <1V IV - Ivlng> = O,VSH, EH, IH’SVl Ev, IV = SITI’ EH' IH' RH' Sv, E{;, I‘;, a; > 0.

We relied on the fact that each variable at the endemic point is equal to its reference value because at this
point the system is in a state of equilibrium and the variables do not change with time.

After forming the Lyapunov function, we now move to its derivative with respect to time to study its change
at the endimic point.

3-V(X,Y) = VU,(X).F(X) + VU,(Y).F(Y).
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. . wq Sg\ds . «q En\dE B wq Ig\dl .
=VX,Y) = as, <5H - S5 =S5 ”f)d_f + ag, <EH - E}, — EHlnEg>d—tH+ ap, (IH - -1 né)d—;w as, (SV - Sy —
x 10, SV | dSv _E* _ ErinEv) 4 I _prplv)dv
Sy ns‘,}) & T asy (EV Ey, — Ey nE‘,;) & Tay (IV Iy — Iyln 1,*,) vt
7 = _%)‘“_H ( _ﬁ)dﬂ ( _ﬁ)‘“_H ( _i)ﬂ ( _ﬁ)dﬂ ( _
=VX,Y) = ag, ( su) ar + ag, ) + ay, ) at + as, sv) ar + ag, ) ar +a;, (1
1) iy
Iy/ dt :
We now substitute the values of the variables at the endemic state, , into the derivative of the Lyapunov
. (Au+pR)  BuShln a1Efy azli Ay BvSvly  asEy
function ( ) ) ) R ) —)
Bulg+ur)’ (a1+pp)’ (a2 +pg+86-9) " (ug+p)’ Briy+uy)’ (as+uy)’ uy
( (Ag+pREp) ) (ﬁHsj‘qI;I a1EYy
. _ _ \@Buly+em) \dsy _ \(ea+pp)) | dEg ((BHSHIH)) _ \Gaz+ug+5—9)) | diy ((ﬁHSHIH))
= V&Y =M1 S e T Ey dt (a1Ep) 1 Iy dt BvsvIv)
< Ay > (ﬁvsx*/ll*/> azEy
(Bvly+uy)) | dsy ((ﬁHSHIH) ) _ \laz+ry)) | dEy ((EHSHIH)) 1 _( ry ~ ) dly
Sy dt (BvSyiv) * Ey dt (azEy) Iy dt’

Su(Buli+un) Ep(ai+py)

(LHSHIH)) (1 - (76{15;1 )) (a1Ey — (az +uy + Iy +Ply) + (M) (1 = (L)) Ay — BySyly —

= V(X' Y) = (1 - (M)> (Ay — BuSuly — upSu + pRy )+ (1 - (M)> BuSuly — (@ + uy)Ey) +

(t1Ex) I ag+un+6—) (BvSviv) sv(Bviy+uy)
(BuSHIH) _ (_Bvsvly _ (BuSHIH) _ (asEy _
wSy )+ (—(BVSVIV) ) (1 (Ev(asﬂtv))) (BvSvly — (as + py)Ey) + (—(asEv) ) (1 (IV#V)) (azEy — uyly).

When studying the endemic point, it is found that the derivative of the Lyapunov function takes a complex
form, comprising both positive and negative terms, which makes it difficult to determine the sign of the
derivative directly. Therefore, it is not possible to explicitly conclude whether the point is stable based solely
on this derivative, and it is necessary to rely on other analytical methods or numerical studies to evaluate
the system's stability.

Therefore, we now resort to the numerical interpretation of the malaria model using Euler's method, with
the introduction of values for the variables at the endemic point, to study the behavior of the system at this
point and evaluate its stability in the event of the presence of the disease among the population.

Numerical Representation
To support the results extracted from the mathematical analysis, a numerical simulation of the model was
conducted via MATLAB, and the solution of the deterministic system is shown in the following figure:

Deterministic Malaria Model - Euler Method

1000 r
s
H
200 =
En
800 \ (R
\ R
700 H
600 \ v
E \ EV
£ 500 \ v H
(=92
o
(=N

|
400 \

300 .~

200 T

! | T I
100 /// T | | ‘ —
O — = T B F F F r
(o] 2 4 6 8 10 12 14 16 18 20
Time

Figure 1. deterministic malaria model, Ay = 10,4, = 5,8y = 0.002 , 8, = 0.0015, uy = 0.01,,uy, = 0.05,p
=0.1, 6= 0.02,¢ =0.01,a; =0.3,a, =0.2,a3 = 0. 4.

The numerical drawing of the deterministic model of malaria calculated by the Euler method shows the
evolution of the number of human populations over time. We notice a decrease in the number of healthy
people (Sy) and a gradual increase in the number of infected people (/y) and recovered people (Ry), while the
number of infected mosquitoes (/) increases and stabilizes after a period. This indicates that the system is
approaching an endemic equilibrium.

Reflecting the continued spread of the disease in the community without disappearing, i.e., the DFE is
unstable, and R, > 1.

After studying the numerical behavior of the deterministic system, we now move on to formulating the
stochastic model of the system (1) to take the effect of randomness into account.
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The stochastic system model (1).[15]:

In biological and epidemiological systems, natural variables often undergo random changes as a result of
environmental factors or individual fluctuations in society.

Therefore, it is necessary to convert the deterministic model (1) into a stochastic model to take these changes
into account and analyze their impact on the disease dynamics. To represent these random effects, we
assume the presence of Wiener-type noise, which allows us to simulate small, cumulative random changes

in the system's

variables, which better reflects the realistic nature of complex biological or physical

processes.
Rewrite the model as

1- Probabilities associated with changes in the transmission of Malaria model:

Table 2. Probabilities associated with changes in the transmission of Malaria model

d;_tH = —BuSuly — 1uSy + PRy
dstH = BuSuly — a1 Ey — uyEy
gg_f =mEy — azly — pyly — 61y + Ply
3 d;;tH = aly — puRy — pRy (2)
dditv = =BySvly — uySy
% = BySvly — azEy — uyEy
g% = azEy — pyly

Changes,Ax; Probability,p;
(-1,1,0,0,0,0,0)*. BuSyly At.
(-1,0,0,0,0,0,0)". :HgHHAt.
(1,0,0,—1,0,0,0)". PRy At.
(0,—-1,1,0,0,0,0)". aEy At.
(0,—1,0,0,0,0,0)*. puyEy At.
(0,0,—1,1,0,0,0)*. ayly At.
(0,0,—1,0,0,0,0)". uylyAt.
(0,0,—1,0,0,0,0)". 6l At.
(0,0,1,0,0,0,0)*. Ply At.
(0,0,0,—1,0,0,0)". nyRyAt.
(0,0,0,0,—1,1,0)*. BySyly At.
(0,0,0,0,—1,0,0)*. uySy At.
(0,0,0,0,0,—1,1)". a3zEy, At.
(0,0,0,0,0,—1,0)". uyEy At.
(0,0,0,0,0,0,—1)*. uylyAt.
2- The expectation E(Ax) = Y13, p;Ax; is 7 X 1 matrix, the expectation can be expressed as follows.
E(Ax) = 21131 pidx; = p1Axy + paAxy + psAxs + -+ pisAxgs .
-1 -1 1 0 0 0
1 0 0 -1 -1 0
0 0 0 1 0 -1
E(Ax) = Y15 pidx; =BuSuly| O |+wuuSu| 0 |+pRy | =1 [+ aEy| O |+upEy| 0 |+anly| 1 |+
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0
-1 -1 1 0
:u'HIH 0 +6IH 0 +¢IH 0 +I'1HRH -1 +
0 0 0 0
0 0 0 0
0 0 0 0
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SO OO O
SO OO O

1Sy PRy 0 0 0 0
BHSHIH 0 0 —a.Ey —unEy 0 0
0 0 W ( 0 a,Ey 0 —ayly —uyly
E(Ax) = Y12 pidx; = 0 + 0 + | —pRy | + 0 + 0 +| ayly |+ 0 +
0 0 0 0 0 0 0
SACPANDAS AR DARIARY
0 0 0 0 0 0 0
0 0 0
0 0 0
=6ly Yy 0
0 0 0
vo S e )
0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
o |+l o [+| o |+|] o [+] o
—BvSyly —Uy Sy 0 0 0
\.BVSVIV/ 0 —azEy —uyEy \ 0 /
0 0 azEy 0 —uyly

—BuSuly — kuSy + PRy
BuSuly — a1 Ey — uyEy
By — azly — uyly — 61y + Yly
E(Ax) = —pRy + ayly — uyRy At.
—BvSvly — uySy
BvSvly — asEy — uyEy
asEy — pyly
3- The diffusion matrix G of dimension 7 X 15 is

~VPBuSulu — [1;5, ~/PRu 0 0 g 0 0
JBuSuln 0 0 ~VaEn —JuE, 0 0
0 0 0 B, 0 N%lw —Ju1,-[s1,
G = 0 0 —JePRyw 0 Jagly 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 8 0 8 0 0
i 0 0 0 0
lg - UnRy 0 0 0 0 0
0 o —VBSI —Jws, 0 0 0
0 0 g, o V®mEbo—JuE 0
0 0 0 0 JasEy 0 —Hvly

4- we formulate the stochastic system as

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t).
dSy ¢
dEy . dw, (t)
dly, dW,(t)
Where dX(t) = |dRye |, fX(6),6) = [5$2], g(X(0),6) = Gand aw(t) =|
dSy, _
dEy, dWys(t)
| dIV,t i
Thus, the system takes the following form:
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dSpe —BuSuly — kuSu + PRy
dEp BuSuly — a1Ey — pyEy
dIH,t alEH_aZIH_MHIH_61H+¢IH

—pPRy + azly — uyRy
—BySvly — wySy
BvSyly — asEy — uyEy
asEy —uyly

(Ww—sd_ .
0
0

7

0 a

._.
T

H 0

(=N

0
— E. _ 0
Sl 0 0 B0 —\JuyEy
BHOHH 0 m_
0
0
0
0

o O O
S O OO
(=]
o O o
[=NeleNe)
[= =N}

0 0 0 0 0

0 0 0 0 0 dw,(t)
v, O 0 0 0 0 AW, (t)

_ 0 0 0

0 UuRy 0 0
0 0 —VBrSvly —V My Sy \/_E 0 0
0 0 BvSvly 0 BB —y ‘uVEV / dW15(t)
0 0 0 0 JazEy, _\/.UVIV

dSy: = (PRy — BuSuly — uySy)dt — | BuSulydW, () — ﬂHSHdWZ(t) + PRy dWs5(t)
dEy; = (BuSuly — ayEy — uyEg)dt + Y, BuSulydW;(t) — i a EydW,(t) — Y, uyEgdWs(t)

dly = (@ Ey — axly — pyly — 81y + Yl )dt + Ja  EydW,(6) — \J axlpdWe(t) — /upylydW,(t) —
VOl dWg () + /Pl dWs(t)
) ARy = (azly — pRy — ugRp)dt — [ pRy dW5(t) + / azlydWe(t) — /upRydWy,(t) (3)

dSye = (=BySvly — uySy)dt — /By SylydW, 1 (t) — / pySydW;, ()
dEy . = (BySyly — azEy — uyEy)dt +/BySylydWi,(t) —  azEydWy3(t) — /iy EydW,4(t)
dle = (@sBy = wrly JAE+ 1o o aw,, (6) — Ty dWas ()

After formulating the stochastic model of the system, we now move on to formulating the Lyapunov function
to study the stability of the system under the influence of randomness.

W(t) = (W.(t), W,y(t), ..., Wis(£))T is independent standard wiener process Z(t) = (Sy, Ey, Iy, Ry, Sy, Ev, I,)T is a
seven-dimensional vector function, where T is transposition.

Introducing a 1yapunov function:

V(t,Z) = ag, (SH SHln ) + ag, (EH Ef — EHln ) + ay, (IH I IHln ) + ag, (RH — Ry — RHlnRH) +

H
as, (SV Sy —Sypln SV) + ag, (EV E; — Ejln ) +ap, <IV Iy — Iyln 1_*)'
v
Applying the Ito lemma [16] :

AW, (t)
AW, (1)
v (t,Z) = LV(t, 2)dt + 5] 2 g,(t, Z)dW (t) where dW (t) = |
AW,5(0)
Where LV(t,Z)— (t 7))+ X filt, Z) (t Z)+- Z [g(t 2)g(t,2)" ]Ua %, " (t,2).
W(6,2) = 3t it D) 3= (6. 2) + 33 [g(t,Z)g(t,Z) Ji e (62):
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Sk
fi(t, Z) (t Z) Ay — BuSuly — UuSu + PRy asy, (1 - E)
Eg
f2(¢, Z) (t Z) BuSuly — (ay + uEy ) “EH< E, )
f3(t, Z) (t Z) (a1Ey — (az + uy + Iy + Ylyay,

(-1
ﬁ(tZ) (tZ) f4(tZ) (tZ) = | @l = Gy + PRy ) g, (1- ) ,
)

Sv
fs(t, Z) (t Z) Ay = BvSvly —wySy ) as, <1 s
v
Ey
fo(t, Z) (t Z) BvSyly — (as + uy)Ey dag, <1 - E_>
v
I
fr(t, Z) (t Z) (a3Ey —uyly day, (1 - I_V>
v
1qy T a2v 1 02V a2v a2v a%v a2v a2v
2 Xijle(t.2)g9(t, 2)"]y dx;0x 2 (.91,1 8X10X, t 912 9X10X; t 914 0X10X, + 921 0X,0X, t 922 8X,0X, t 923 9X,0X3
a%v 2y a%v a%v 2y 2y 2y 2y a%v
932 5x20x, t 933 9X30X3 t Gz 9X30X, t Gan 9X,0X, t Ga3 9X,0X3 t Gaa 0X40X, t 9ss 9X50Xs t Gs6 9X50Xg * Yo 9Xg0Xs +

a%v n a%v n 62V n a%v )
g“axax g67axax g76axax g77axax

Where g(t,Z)g(t,Z)" is

BuSuly + UySy + pRy —BuSuly 0 —pRy 0
—BuSuly BuSuly + a1 Ey + uyEy —aEy 0 0
0 —a,Ey a Ey + agly + pyly + 81y + Iy —a,ly 0
PRy 0 —a,ly PRy + azly + uyRy 0
0 0 0 0 BvSvly + uySy —B
0 0 0 0 —BySyl,  BuSyly + ¢
0 0 0 0 0 —0

St Ef)
LV(t,Z) = (Ay — BuSuly — uuSu + PRy asgy, (1 - ﬁ) + (BuSuly — (a1 + py)Ey ) ag, (1 - i) +
Iy R},
(a1Ey — (ap + puy + Oy + Ylyay, (1 - i) + (azly — (uy + PRy ) ag, (1 - _H) + (Ay — BySvly — uySy )asv (1 -

Sy Ey Iy
_V) + (BvSvly — (az + pwy)Ey dag, (1 - _V) + (azEy — wyly )alv( - Z) <(.8HSHIH + uySy + pRy)

I as aSH

(- ﬁHSHIH)aS En +(-p H)W‘l'( .BHSHIH)aE as +(.BHSHIH+a1EH+.uHEH)aE aE + (- alEH)aE a, +
(—aEy) —— ——+ (- aZIH)aI ORn + (R H)aR as + (—axly)

(pRy + ayly + pyly) W + (BySvly + .UVSV) m + (=BvSvily) m + (=BySvily) m + (BySvly + azEy +

0lyO0Ey 61 dly ORydly
wyly) ———— 3£, 9Ey + (= a3EV) 35 oIy + (- 0-’3EV) 31y 0Ey + (azky +puyly) 5; BIV)
St E}
LV(t,Z) = (Ay — BuSuly — uSu + pRy )asH ( - i) + (BySuly — (a1 + py)Ey ) Apy ( - i) +
Iy R},
(a1Ey — (az + puy + &Iy + Ylyag, (1 - i) + (azly — (uy + PRy ) agy, (1 - _H) + (Ay — BvSvly — Sy Jas, (1 -

Sy Ey Iy

_V) + (BySvly — (as + w)Ey dag, (1 - _V) + (azEy — pyly )aly( - IZ) <(.8HSHIH + uySy + pRy)
(=BuSuln)(0) + (—pRy)(0) + (— .BHSHIH)(O) + (BuSuly + a1 Ey + pyEy) ———— EnoEn
(a1Ey + azly + #HIH + 8l + 1/)IH) FTpeT + (—aIy)(0) + (pRy )(0) + (—azly)(0) + (pRy + azly + uyly) Rn aRH

(BvSyly + pySy) m + (=BySv1y)(0) + (=BySy 1) (0) + (BySyly + azEy + livlv)m + (—a3Ey)(0) + (—a3Ey)(0) +

as BSH

+ (—a1Ex)(0) + (- a’1EH)(0) +

a%v
(asEy + pyly) oty
St Ej)
LV(t,Z) = (Ay — BuSuly — UuSu + pRy )asH (1 - ﬁ) + (BuSuly — (a1 + py)Ey ) Oey (1 - ﬁ) +
Iy R},
(a1Ey — (az + puy + 8y + 1/)111)0»’11., (1 - i) + (azly — (uy + PRy ) (45:3% (1 - ﬁ) + (Ay — BySvly — uySy )a’sv (1 -

) 4 BySyly = (as + m)Ey g, (1) + (@sBy =l Dy, (1) +2( BuSuli + 1Sy + pR) 5o +
Sy voviy 3 T Uy)Ly Ey v 3by — Uyly Iy Iy 2 HOHlH T Hpon T PRy aSyasSy
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(BuSyly + ayEy + #HEH) 9EROER + (a1 Ey + azly + pyly + 81y + 1/”11) 1ndly + (PRy + azly + MHIH)W

(BvSvly + ﬂVSV) 35795y + (BvSyly + asEy + puyly) ———— 3£, 9Ey + (asEy + py V) YT, )

Hence:
awy (t)
AW, (1)
dv(t,7) = LV (t, Z)dt + 27"””) gi(t, Z)dW (t) where dW (t) =|
dWis(t)

—BuSulydW, (t) — \JuySydW,(t) + /pRy dW5(t)

\ BuSulydWy(t) — \/de4(t) - \/EdWS(t)
Vi EydWy(8) = eIy dWe () — gl d Wy (£) —
572D g (¢, 2)aw (1) = 57 22 VOlndWo(0) + il dWs(6)
‘ C | PRy dWs (D) + JaplydW(t) — iRy dWio(6)
By Sy Ly dWy,(£) — den(t)
VBySylydWy4(t) — mdwm(t) - \/deu.(t)
mdwm(t) - \/mdww(t)

S E}
av(t,z) = [(AH — BuSuly — kuSu + pRy )asH (1 - i) + (BySuly — (a1 + py)Ey ) Apy (1 - i) +

If, Ry
(a1Ey — (az + uy + Iy + Ylag, (1 - ﬂ) + (azly — (uy + P)Ry ) ag, (1 - é) + (Ay = BvSvly — wSy Das, (1

5 It 1 (asy)?s

V) + (BuSyly — (az + wy)Ey dag, (1 - —) + (azEy — puyly Jay, (1 - i) + ‘<(.3H5H1H + uySy + pRy) (SHH)Z =+
2p*

(BuSuly + e1En + tnEn) —(“f;;)z "t (arEy + axly + puly + 8Ly +ply) —(“(’f’))z” + (ORy + @yl + pyliy) T

(asy)?Sy

BuSvly + uyS) =g+ (BySyly + asEy + prly) fEVV))z Y4 (@B + ) (IIVV>) 21V>] dt + (—yBaSalndW; (6) -
JHSadW,(©) + PRy AW (©)) 2+ (BaSladWy (6) = By dW, () = B dWs(0)) 2o+

(VaBudWa (©) = sl dWo(©) = ialud Wy (©) = Bl dWa(©) + PTadWs() ) 2Ly (([5Ryaiy (0) + T Wo(6) —
VEaRadWso(©) ) 2+ (RS, Ty dWsy(©) = Sy AW, (6) ) 2+ (B STy dWisy () — s By dWas (6) -
ViEaWa,®) 3 + (@B dWsa(®) = i TrdWas(0) 37

Then the Lyapunov function of stochastic Malaria model is
v(s,z
V(6 Z(6)) = V(to, Z(te)) + [ LV (s, Z(s))ds + [} 542222 g, (5, Z(5))dW (s).

V(t,Z) = V(ty, Z(to)) + ftto [(AH — BuSuly — uuSy + pRy )as, (1 - j_Z) + (BuSuly — (a1 + py)Ey ) ag, (1 - E_H) +

Ep

Iy Ry
(a1Ey — (az + puy + &Iy + Ylyag, (1 - i) + (azly — (uy + P)Ry ) ag, (1 - ﬁ) + (Ay — BvSvly — Sy Jas, (1

S5 E e 1 (asy)?s

i) + (BySvly — (as + w)Ey dag, (1 - E_‘;) + (azEy — pyly )aly( - i) + 5((.311511111 + uySy + pRy) (SHT)ZH
(a EH) H s (@)1 (ary )?Ry

(BuSyly + a1 Ey + pyEy) )7 + (a1 Ey + azly + pyly + 81y + Ply + pRy) U2 + (pRy + #HIH)W +

(asy)*sy (agy)?Ey

)7 wpr T (@b T avly) (a(:&if&)] as+ ), <_ (aSH (1-
%)) Y, BuSulydW,(s) — (‘ISH (1 - %)) \ buSydW, (s) + (asH ( ))\/PRH dW3(5)> ((“EH ( -

_)) JBaSalndW, (s) — (aEH (1- —)) JaEndWi(s) = (ag, (1 - %))\/MHEHdW&-,(s)) +
(G (1 = DV BaWa(s) = (@, (1= EEDaaTu@els) = (i (1 = ED il (5) = (1= EDYBTaaWes) + (1

(BvSyly + pySy)

+ (BySvly + azEy + uyly)
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((aRV ( RV)> mdws(s) + (aRV ( )) \/deAS) (agy, (1 - %))\/ tuRydWio(s) ) +
((asv (1 - ;%)) \ BySylydW,4(s) — (asV (1 - %))\/ Uy SydWi,(s) > + ((“EV (1 - E_Z)) V BySylydW,(s) —
(a’EV (1 - %)) V azEydWys(s) — (ag, (1 - %))\/ .uVEVdW14(S)> + ((aIV (1 - %))\/ azEydW,5(s) — (ap, (1 -

L)) T dWis(s)

And by taking the expectation of both sides we get

E[V(t,2)] =V(to, Z(t)) + E [fti) [(AH — BuSuly — uuSu + pRy asy (1 - z_Z) + (BuSuly — (ay + upEy ) ag, (1
21 4 (@B = (@ + g + Oy + Wl (1= 12) + (@aly = Gty +pIRy ) gy (1= 52) + (Ay = BySyly

wSy Jas, (1 - _) + (BySvly — (az + w)Ey dag, (1 - _) + (azEy — pyly ay, (1 - I_‘t) + l((.BHSHIH + uySy +

I
(@Ey)?ERy
(En)?

(agy)? (ar)%Iy
+ (BySvly + azEy + uyly) fEVV)Z v + (a3Ey + pyly) (IX/)Z V)] ds].

) (aSH) SH
H7 (52

(ary )2R},
Unly) #)ZH + (BySvly + uySy)

+ (0 Ey + ayly + pyly + 61y + YIy)

+ BuSuly + Ey + uyEy) + (pRy + ayly +

(aSV)ZS‘;
(sv)?

To ensure the stability of the model in a random way using a Lyapunov function, the function V must always
be positive, and its deterministic derivative must LV < 0 in the appropriate range. Under these conditions, it
is V becomes a super-martingale., that is, its mathematical expectation does not exceed its initial value.
When taking the mathematical expectation of both sides of the equation, the random part resulting from the
integration disappears with respect to the Wiener process because this part represents martingale and
expectation martingale equal to zero.[16]

Therefore, stability can be analyzed based on the deterministic part of the expression only. However, due to
the complexity of the derivatives of the Lyapunov function and the difficulty of accurately calculating the
mathematical expectation at a specific equilibrium point, this analysis was limited to studying the general
properties of the function. It did not allow for a qualitative discussion of the system's behavior and stability
in the average sense, based on the conditions that the proposed function fulfills.

Numerical Representation:
To support the results extracted from the mathematical analysis, a numerical simulation of the model was
performed via MATLAB, and the solution to the random system is shown in the following figure:

Stochastic Malaria Model (Humans)
30 T T T T T

m o

r

P

Human population

o r r r r r
(] 5 10 15 20 25 30

Time

Figure 2. Stochastic malaria model (humans), Ay = 10,8, = 0.002 , uy = 0.01, p = 0.03, §= 0.005, ¢ =
0.002,a, = 0.1, a, = 0.05.

The figure illustrates the effect of randomness on the spread of malaria among humans. The number of
healthy individuals (Sy) fluctuates sharply at the beginning, while the populations of susceptible (Ey) and
infected (Iy) individuals change, reflecting the dynamics of the infection. The population of recovered
individuals (Ry) gradually increases and decreases over time, due to loss of immunity or re-exposure.

In general, the diagram shows how different groups interact within a human society under the influence of
randomness, which gives a realistic picture of the movement and spread of the disease.
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Stochastic Malaria Model (mosquio)
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Figure 3. Stochastic malaria model (mosquito), A, = 5, 8, = 0.0015, u,, = 0.05, a3 = 0.08.
The figure illustrates the fluctuations in mosquito populations in a stochastic malaria model. The number
of healthy mosquitoes (S,) appears to gradually decrease over time, while the numbers of susceptible (Ey)
and infected (I;) mosquitoes fluctuate continuously, reflecting the effect of randomness on each population
during the period studied.

Results

This work presents the analytical and numerical findings derived from both the deterministic and stochastic
formulations of the malaria transmission model. The deterministic analysis revealed two biologically
meaningful equilibria: the disease-free equilibrium (E°) and the endemic equilibrium (E*).By applying the
Next-Generation Matrix approach, the basic reproduction number (R,) was expressed as the spectral radius
of the matrix FM~!.This threshold value governs the qualitative behavior of the system: when R, < 1,
infection gradually disappears from the population; conversely, when R, > 1, malaria persists, and the
system converges toward the endemic equilibrium. Using Lyapunov’s direct method and LaSalle’s Invariance
Principle, the global stability of both equilibria was rigorously demonstrated.

A properly defined Lyapunov function V(X) confirmed that the time derivative dV /dt is negative semi-definite
within the feasible region, ensuring global convergence to E° or E* depending on the value of R,.This
analytical result guarantees that the long-term system behavior is fully determined by the reproduction
number, regardless of the initial state.To explore the effect of environmental variability, stochastic
perturbations were introduced, transforming the deterministic system into a stochastic differential
framework.

By employing It6’s formula on a stochastic Lyapunov functional V (X, t), the extinction condition was obtained
Rowhere this condition indicates that random fluctuations can effectively lower the transmission threshold,
promoting disease extinction even in scenarios where the deterministic model predicts persistence. The
analytical findings were validated through numerical simulations using the Euler method for the
deterministic system and the Euler—-Maruyama method for the stochastic model. In all simulations, the
trajectories of the deterministic system approached the predicted equilibria, while the stochastic trajectories
demonstrated oscillatory damping that, for higher noise intensities, eventually led to extinction. These
numerical outcomes are fully consistent with the theoretical expectations derived from the analytical
framework.

Discussion

The comparative analysis of the deterministic and stochastic malaria models provides valuable insights into
the interplay between system parameters and environmental fluctuations. In the deterministic scenario,
malaria persistence is entirely dictated by the value of the basic reproduction number (R,). However, the
stochastic formulation introduces a new dimension of realism: environmental noise, often viewed as a
destabilizing factor, can instead act as a stabilizing mechanism that drives the system toward extinction.
This finding aligns with modern epidemiological understanding that random environmental variations, such
as changes in temperature, humidity, or mosquito breeding conditions, can influence malaria transmission
intensity.

Mathematically, the inclusion of white noise modifies the effective threshold for infection persistence,
showing that stochasticity can suppress disease spread even in parameter regimes where the deterministic
model predicts long-term endemicity. The significance of this result lies in its practical implications. It
suggests that natural fluctuations and uncertainty may enhance disease control efforts rather than hinder
them. By recognizing that random environmental effects can push the system below the effective
reproduction threshold, public health strategies can better anticipate and exploit such stabilizing influences
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in designing sustainable intervention programs. Overall, the deterministic analysis offers theoretical clarity,
while the stochastic model introduces environmental realism. Together, they provide a comprehensive
perspective on malaria transmission dynamics that bridges mathematical rigor and biological relevance.

Conclusion

This study conducted an integrated analytical and numerical examination of malaria transmission under
deterministic and stochastic frameworks. The basic reproduction number (Ry) was identified as the key
threshold determining whether malaria persists or dies out. By employing Lyapunov stability theory and
LaSalle’s invariance principle, the global asymptotic stability of both the disease-free and endemic equilibria
was rigorously demonstrated. Incorporating stochastic effects revealed that environmental noise can
effectively reduce the reproduction threshold, leading to possible disease extinction even when deterministic
models predict persistence. These results deepen the theoretical understanding of malaria dynamics and
provide valuable insights for developing sustainable, evidence-based control strategies under environmental
uncertainty.

Conflict of interest. Nil

References

1- Hethcote HW. The mathematics of infectious diseases. SIAM Review. 2000;42(4):599-653.

2- World Health Organization. What is malaria? World Health. 1998;51(3):6-7.

3- Eppler B. An overview on malaria and its impact on public health. J Bacteriol Parasitol. 2023;14(S23):1000069.

4- Le PV, Kumar P, Ruiz MO. Stochastic lattice-based modelling of malaria dynamics. Malar J. 2018;17(1):250.

S5- Prosper OF, Feldman D, Miller D. A stochastic differential equation model for malaria transmission dynamics.
Math Biosci. 2017;287:72-83.

6- ZhangJ, Chen X. Analysis of malaria model with stochastic perturbations. Nonlinear Dyn. 2019;97(1):425-437.

7- Yang Y, Tang B, Zhao S. A stochastic model of malaria with environmental noise. Chaos Solitons Fractals.
2020;138:109960.

8- ZhouY, Liu W, Fan M. Stability analysis of stochastic epidemic models via Lyapunov functions. Appl Math Lett.
2021;111:106637.

9- Mao X. Stochastic Differential Equations and Applications. 2nd ed. Chichester: Horwood Publishing; 2007.

10- Khasminskii R. Stochastic Stability of Differential Equations. Berlin: Springer; 2012.

11- Heesterbeek JAP, Roberts MG. The Next Generation Matrix in Epidemic Theory. In: The Basic Reproduction
Number. Springer; 2018. p.101-119.

12- Allen LJS. Stochastic Population and Epidemic Models: Persistence and Extinction. Cham: Springer; 2017.

13- Tuckwell HC. Introduction to Theoretical Neurobiology: Volume 2. Cambridge: Cambridge University Press;
1988.

14- Isham V, Medley G. Models for infectious disease dynamics. J R Stat Soc A. 2020;183(3):741-769.

15- Bjornsson B. Modelling stochastic processes in epidemiology. Reykjavik: University of Iceland; 2023.

16- Bjérnsson H. Lyapunov Functions for Stochastic Systems: Theory and Numerics. 2023.

Appendix

1- Deterministic Malaria Model - Euler Method (MATLAB)
%% Deterministic Malaria Model - Euler Method
clear; clc; close all;

% PARAMETERS (example values)

Lambda_H = 10; Lambda_V = 5;

beta_H = 0.002; beta_V = 0.0015;

mu_H =0.01; mu_V = 0.05;

rho = 0.1; delta = 0.02; psi = 0.01;

alpha_1 = 0.3; alpha_2 = 0.2; alpha_3 = 0.4;
% INITIAL CONDITIONS

S_HO = 1000; E_HO = 10; I_HO = 5; R_HO = 0;
S_VO0 =500; E VO=35; 1.VO=2;

yO =[S_HO E_HOI_HO R_HO S_VO E_VO I_VOJ;
% TIME PARAMETERS

T = 20; % total time

dt=0.1; % time step

N =T/dt; % number of steps

time = 0:dt:T;

% ALLOCATE ARRAYS

Y = zeros(N+1,7);

Y(1,:) = yO0;
% EULER METHOD
fork=1:N

S H=Y(k,1); E H=Yk,2); H=Y(k,3); R_H=Y(k,4);
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S V=Yk,5); EV=Yk,0); 1V=Yk,7);

dS_H = Lambda_H - beta_H*S_H*I_H - mu_H*S_H + rho*R_H;
dE_H = beta_H*S_H*I_H - (alpha_1 + mu_H)*E_H;

dI_H = alpha_1*E_H - (alpha_2 + mu_H + delta)*I_H + psi*]_H;
dR_H = alpha_2*I_H - (mu_H + rho)*R_H;

dS_V = Lambda_V - beta_V*S_V*I_V - mu_V*S_V,

dE_V = beta_V*S_V*I_V - (alpha_3 + mu_V)*E_V;

dI_V = alpha_3*E_V - mu_V*[_V;

Y(k+1,:) = Y(k,:) + dt*[dS_HdE H dI HdR HdS_VdE_V dL VJ;

end
% PLOT RESULTS
figure;
plot(time,Y(:,1),'b’,'LineWidth',1.5); hold on;
plot(time,Y(:,2),'m L1neW1dth’ 1.5);
plot(time,Y(:,3),'r', L1neW1dth' 1 S);
plot(time,Y(:,4),'g','LineWidth',1.5);
plot(time,Y(:,5),'c', LineWidth',1.5);
plot(time,Y(:,6),'y', LineWidth',1.5);

7),

plot(time,Y(:, 'k‘ 'LineWidth',1.5);

xlabel('Time'); ylabel(‘Population‘);
legend('S_H','E_H','T H,'R H','S V','E _V','I V');
title('Deterministic Malaria Model - Euler Method');
grid on;

2- Stochastic Malaria Model - Euler-Maruyama

% PARAMETERS (Example values)

Lambda_H = 10; % Not used in S_H since removed in SDE
beta_H = 0.002; alpha_1 = 0.1; alpha_2 = 0.05;
mu_H = 0.01; delta = 0.005; psi = 0.002; rho = 0.03;
beta_V = 0.0015; alpha_3 = 0.08; mu_V = 0.05;

% Simulation settings

T = 30; % Total time
dt =0.01; % Time step
N =T/dt; % Number of steps

% Initialize variables
S_H = zeros(1,N); E_H = zeros(1,N); I_H = zeros(1,N); R_H = zeros(1,N);
S_V = zeros(1,N); E_V = zeros(1,N); [_V = zeros(1,N);
% Initial conditions
S_H(1) =25; E_H(1) = 15; I_H(1) = 10; R_H(1) = 5;
S_V(1) =30; E_V(1) = 20; I_V(1) = 10;
% Simulation loop (Euler-Maruyama)
fori= 1:N-1
dW = sqrt(dt)*randn(1,15); % Wiener increments
% Human populations
S_H(i+1) = S_H(i) + (rho*R_H(i) - beta_H*S_H(i)*I_H(i) - mu_H*S_H(i))*dt ...
- sqrt(beta_H*S_H(i)*I_H(i))*dW(1) ...
- sqrt(mu_H*S_H(i))*dW(2) ...
+ sqrt(rho*R_H(i))*dW(3);
E_H(i+1) = E_H(i) + (beta_H*S_H(i)*I_H() - alpha 1*E_H(i) - mu_H*E_H(i))*dt ...
+ sqrt(beta_H*S_H(i)*I_H(i))*dW(1) ..
- sqrt(alpha_1*E_H(i))*dW(4) ...
- sqrt(mu_H*E_H(i))*dW(5);
[_H(i+1) = [_H(i) + (alpha_1*E_H(i) - alpha_2*I_H(i) - mu_H*I_H(i) - delta*I_H(i) + psi*I_H(i))*dt ...
+ sqrt(alpha_1*E_H(i))*dW(4) ...
- sqrt(alpha_2*I_H(i))*dW(6) ...
- sqrt(mu_H*I_H(i))*dW(7) ...
- sqrt(delta*I_H(i))*dW(8) ...
+ sqrt(psi*I_H(i))*dW(9);
R_H(i+1) = R_H(i) + (alpha_2*I_H(i) - mu_H*R_H(i) - tho*R_H(i))*dt ...
- sqrt(rho*R_H(i))*dW(3) ...
+ sqrt(alpha_2*I_H(i))*dW(©) ...
- sqrt(mu_H*R_H(i))*dW(10);
% Vector populations
S_V(i+1) = S_V(i) + (- beta_V*S_V(i)*I_V(i) - mu_V*S_V(i))*dt ...

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0
Received: 12-08-2025 - Accepted: 10-10-2025 - Published: 18-10-2025 2292


https://doi.org/10.54361/ajmas.258427

Alqalam Journal of Medical and Applied Sciences. 2025;8(4):2276-2293
https://doi.org/10.54361/ajmas.258427

- sqrt(beta_V*S_V(i)*I_V(i))*dW(11) ...
- sqrt(mu_V*S_V(i))*dW(12);
E_V(i+1) = E_V(i) + (beta_V*S_V(i)*I_V(i) - alpha_3*E_V(i) - mu_V*E_V(i))*dt ...
+ sqrt(beta_V*S_V(i)*I_V(i))*dW(11) ...
- sqrt(alpha_3*E_V(i))*dW(13) ...
- sqrt(mu_V*E_V(i))*dW(14);
[ V(i+1) = I_V(i) + (alpha_3*E_V(i) - mu_V*I_V(i))*dt ...
+ sqrt(alpha_3*E_V(i))*dW(13) ...
- sqrt(mu_V*I_V(i))*dW(15);
% Ensure non-negative populations
S_H(i+1) = max(S_H(i+1),0); E_H(i+1) = max(E_H(i+1),0);
I_H(i+1) = max(I_H(i+1),0); R_H(i+1) = max(R_H(i+1),0);
S_V(i+1) = max(S_V(i+1),0); E_V(i+1) = max(E_V(i+1),0);
I V(i+1) = max(I_V(i+1),0);
end
% Plot results
time = 0:dt:T-dt;
figure;
plot(time,S_H,'b',time,E_H,'c',time,I_H,'r',time,R_H,'g','LineWidth',1.5);
xlabel('Time'); ylabel(Human population'); legend('S_H','E_H','T H',)R_H');
title('Stochastic Malaria Model (Humans)');
figure;
plot(time,S_V,'b',time,E_V,'c',time,l_V,'r','LineWidth',1.5);
xlabel('Time'); ylabel('Vector population'); legend('S_V','E_V','1_V');
title('Stochastic Malaria Model (mosquio)');
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