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Abstract 
The suggested paper presents a theoretical study to analyze the dynamical response of a simple 
pendulum carrying a time-dependent mass. The physical model introduced in this paper builds on 
the assumption that the mass of the hanging point particle varies exponentially with time. By using 
the extended Lagrangian formalism, which takes the reactive force (Meshchersky force) resulting 
from joining or losing mass into consideration, the equation of motion of the system was derived. The 
analysis shows that the effect of the exponential variation of the mass leads to the appearance of a 
physical term that behaves like a linear damping term in the equation of motion, defined as 𝜌 hence, 

because of this damping coefficient, the total energy of the pendulum was exponentially decaying. 
The cases of I: null attached mass's velocity (𝑢 = 0) which leads to a free damped case, II: constant 
attached mass's velocity (𝑢 = 𝑢0) which results in a steady shift in the position of the equilibrium 
point, III: variable attached mass's velocity (𝑢 = 𝑢(𝑡)) which behaves like an external force term that 

can lead to a resonant amplification or change the spectrum of the dynamical response, were 
discussed. The analytical solutions, like the Laplace transform, Green's function, and spectral 
analysis, were obtained. The power delivered from the external driving force to the oscillator and the 

quality factor of the studied system were introduced. 
Keywords. Exponential Mass Variation, Pendulum Damping, Resonance. 

 

Introduction 
Dynamically speaking, the variable mass system is a very classical, familiar problem in the field of classical 
mechanics. It is an old-fashioned problem with historical roots, and it has significant practical importance 
in oceanographic engineering, nutrition systems, and the interaction or integration of mechanical or celestial 
systems. Thanks to Meshchersky, who set up the mathematical cornerstone that interprets the reactive 
forces resulting from joining or losing masses from their original bodies, and his works in this field were a 
reference to formulate the equation of motion for a variable mass point particle [1]. 
While dealing with variable mass systems and when the Lagrangian approach is applied to these systems, 
a grand new physical terminology termed as ''reactive force'' or ''Metchersky’s force'' appears in that context, 
and to provide the consistency of the Lagrangian approach with D'Alembert's principle of virtual work, it 
should be carried out carefully. A set of researchers presents new engineering applications and also seeks 
modified Lagrangian equations that can handle systems with time-dependent mass or position-dependent 
mass [2]. 
In Pendulua, the variation in the pendulum's mass clearly affects the dynamical response of the system, 
and this effect of mass variation becomes very notable since the addition or loss of mass influences the 
system's kinetic energy and moment of inertia and hence influences the resonance response, the quality 
factor, and the oscillation frequency of the system. Models for the variable mass pendulum in a series of 
former theoretical and experimental studies, including advanced analytical techniques like the wave analysis 
and the applications of Green's functions, numerical simulations, and the spectral analysis [3]. 
In this paper, the suggested procedure deals with a simple pendulum carrying a mass varying through time 
as 𝑚0𝑒

𝜌𝑡 where 𝜌 is the mass growth rate. By applying the extended Lagrangian formalism, which takes the 
reactive force into account due to the mass changes, the motion equation was derived. The small angle 
approximation, the Laplace transform for the analytical solution in the case of no velocity for the attached 
mass, i.e., u = 0, the Green's function method for the constant velocity case (u = u0), and the spectral analysis 
method in the case of variable velocity u = u(t) [4]. 
The main aim of this paper is to show how the velocity of the attached mass u and the mass growth rate 
could affect the dynamical behavior of the simple pendulum, from an oscillatory damping to generating a 
new equilibrium position or even energy feedback. Also in this paper, an adequate analytical formula for 
evaluating the relaxation time, the frequency of the damped oscillations, and the Q-value. The results of the 
presented model can be applied in laboratory fields and as a starting point in designing sensors, depending 
on the dynamics of systems with variable mass [5].   
 

Methods 
Consider a simple physical oscillator (Pendulum) consisting of a point particle with time-dependent mass 
𝑚(𝑡). The particle is suspended from a rigid, massless string of length 𝑙, whose upper end is fixed to a 
support. The system undergoes small planar angular oscillations. The focus of this study is the dynamical 
response of the pendulum when the suspended particle has a variable mass. 
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The mass of the particle is assumed to vary exponentially with time according to the following formula: 

𝑚(𝑡) = 𝑚0𝑒
𝜌𝑡                                                                            (1) 

where 𝑚0 is the initial mass at 𝑡 = 0, and 𝜌 denotes the mass growth rate. To describe the dynamics, we 
derive the equation of motion for the pendulum with variable mass using the Lagrangian formalism. This 
formulation provides a consistent framework for analyzing how the changing mass modifies the oscillatory 
behavior of the system. 
In the case of a variable mass system where the mass is varying with respect to the position, the exact form 
of the Lagrangian equation of motion is written as follows: 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑥̇
) −

𝜕𝑇

𝜕𝑥
= 𝐹(𝑥, 𝑥̇, 𝑡) −

1

2

𝑑𝑚

𝑑𝑥
𝑥̇                                     (2) 

where 𝐹(𝑞, 𝑞̇, 𝑡) is the external applied force acting on the system. Actually, the expanded Lagrange equation 
of motion can be formulated for the case of a system of particles where the mass of the system is a function 

of the position, velocity, and time. Suppose a dynamical system consists of N particles, each of mass 𝑚𝑗 

positioned at 𝑟𝑖 in a certain frame of reference, and let 𝑝𝑗 = 𝑚𝑖
𝑑𝑟𝑖

𝑑𝑡
 be the linear momentum of each particle. 

If the considered system has gained or lost an amount of its mass at a velocity 𝑢 with respect to the system, 
the extended Levi-Civita's expression of Newton's 2nd law of motion will be used in addition to D'Alembert's 
principle of virtual work [2]: 

∑𝐹𝑖 =
𝑑𝑝𝑖

𝑑𝑡
→ ∑𝐹𝑖 −

𝑑𝑝𝑖

𝑑𝑡
= 0                                             (3) 

Multiply both sides by (∙ 𝛿𝑟𝑖), one gets: 

∑(𝐹𝑖

𝑛

𝑖

−
𝑑𝑝𝑖

𝑑𝑡
) ∙ 𝛿𝑟𝑖 = 0                                                              (4) 

Here 𝐹𝑖 represents the total force acting on the system. It is spliced into two individual forces, i.e. 𝐹𝑖 = ℱ𝑖 +
𝑅𝑖, where ℱ𝑖 is the total active force acting on each particle and ℳ𝑖 is known as the reactive force, which is 

proportional to the time rate of variation of the mass and to the velocity at which the mass is expelled or 

gained, i.e. 𝑅𝑖 = 𝑢𝑖
𝑑𝑚𝑖

𝑑𝑡
. According to Russian technical literature, the reactive force 𝑅𝑖  is termed as the 

"Metchersky's force" and it is a function of the relative velocity of the expelled or gained mass: 

ℳ𝑖 = (𝑢𝑖 − 𝑣𝑖)
𝑑𝑚𝑖

𝑑𝑡
                                                        (5) 

where 𝑢𝑖 is the velocity of the incoming mass and 𝑣𝑖 is the velocity of the swinging particle. Based on this 
interpretation, equation (4) can be rewritten as follows: 

∑[(ℱ𝑖 + ℳ𝑖)

𝑛

𝑖

− 𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
] ∙ 𝛿𝑟𝑖 = 0                                    (6) 

 Therefore, the expanded Lagrange equation of motion will be: 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑥̇
) −

𝜕𝑇

𝜕𝑥
= 𝑄𝑖                                                        (7) 

Where 𝑄𝑖 represents the non-conservative generalized force, which consists of the external forces and the 
reactive force given as: 

𝑄𝑖 = ∑(ℱ𝑖
⃗⃗⃗  + (𝑢𝑖⃗⃗  ⃗ − 𝑣𝑖⃗⃗⃗  )

𝑑𝑚𝑖

𝑑𝑡
) .

𝜕𝑟𝑖⃗⃗ 

𝜕𝜑
+

1

2
∑[

𝑑

𝑑𝑡
(
𝜕𝑚𝑖

𝜕𝑞̇𝑖

) 𝑣𝑖
2 −

𝜕𝑚𝑖

𝜕𝑞𝑖

𝑣𝑖
2]

𝑛

𝑖

𝑛

𝑖

                 (8) 

Since the mass of the hanging particle changes only with time, then 
𝜕𝑚𝑖

𝜕𝑞̇𝑖
=

𝜕𝑚𝑖

𝜕𝑞𝑖
= 0. The force that acts on the 

point particle is its weight ℱ𝑖
⃗⃗⃗  = −𝑚𝑔𝑗̂ and 𝑈⃗⃗ = (𝑢𝑖⃗⃗  ⃗ − 𝑣𝑖⃗⃗⃗  ) = 𝑈𝜑̂ this is the tangential component of the relative 

velocity of the attached mass, such that 𝜑̂ = 𝑐𝑜𝑠𝜑𝑖̂ + 𝑠𝑖𝑛𝜑𝑗̂ and the position vector for the variable mass object 

is 𝑟𝑖⃗⃗ = 𝑙𝑠𝑖𝑛𝜑𝑖̂ + 𝑙𝑐𝑜𝑠𝜑𝑗 ̂and then 
𝜕𝑟𝑖⃗⃗⃗  

𝜕𝜑
= 𝑙𝑐𝑜𝑠𝜑𝑖̂ + 𝑙𝑠𝑖𝑛𝜑𝑗̂. Hence, equation (8) becomes: 

𝑄 = (ℱ𝑖 + 𝑈⃗⃗ 
𝑑𝑚𝑖

𝑑𝑡
) .

𝜕𝑟𝑖⃗⃗ 

𝜕𝜑
= −𝑚(𝑡)𝑔𝑙𝑠𝑖𝑛𝜃 + 𝑈⃗⃗ 𝑙

𝑑𝑚

𝑑𝑡
                     (8) 

For the case of a varying mass pendulum, the kinetic energy of the system is given by: 

𝑇 =
1

2
𝑚(𝑡)(𝑥̇2 + 𝑦̇2)                                                            (9)  

Now, one has to define the Cartesian coordinates of the system (𝑥, 𝑦) such that: 

𝑥 = 𝑥(𝑙, 𝜑) = 𝑙𝑠𝑖𝑛𝜑 and 𝑦 = 𝑦(𝑙, 𝜑) = 𝑙(1 − 𝑐𝑜𝑠𝜑) 
Then, using some calculus, one gets: 

𝑥̇ =
𝜕𝑥

𝜕𝜑
𝜑̇ = 𝑙𝜑̇ 𝑐𝑜𝑠𝜑                                                        (10𝑎) 

𝑦̇ =
𝜕𝑦

𝜕𝜑
𝜑̇ = 𝑙𝜑̇𝑠𝑖𝑛𝜑                                                      (10𝑏) 

Squaring and adding (10a) and (10b), one obtains: 
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𝑥̇2 + 𝑦̇2 = 𝑙2𝜑̇2 
Therefore, equation (9) becomes: 

𝑇 =
1

2
𝑚(𝑡)𝑙2𝜑̇2                                                       (11) 

Hence, equation (7) becomes: 
𝑑

𝑑𝑡
(𝑚(𝑡)𝑙2𝜑̇) = −𝑚(𝑡)𝑔𝑙𝑠𝑖𝑛𝜑 + (𝑢 − 𝑣)𝑙

𝑑𝑚

𝑑𝑡
                       (12)  

Hence, with little algebra and using the small-angle approximation, one gets: 
𝑑2𝜑

𝑑𝑡2
+

𝑚̇(𝑡)

𝑚(𝑡)

𝑑𝜑

𝑑𝑡
+ 𝜔0

2𝜑 = 𝑈
𝑚̇(𝑡)

𝑙𝑚(𝑡)
                             (13) 

where 𝜔0
2 =

𝑔

𝑙
 represents the simple pendulum's natural frequency and 𝑈 is the relative velocity of the 

attached mass of the system. Equation (13) represents a second-order nonlinear and nonhomogeneous 
differential equation having initial conditions that describes the variations of the angular position of the 

pendulum with respect to time. Inserting 𝑈 = 𝑢 − 𝑣 into equation (13) and setting 𝑣 = 𝑙
𝑑𝜑

𝑑𝑡
  and also using the 

fact that 
1

𝑚

𝑑𝑚

𝑑𝑡
= 𝜌, then arranging the equation, one gets: 

𝑑2𝜑

𝑑𝑡2
+ 2𝜌

𝑑𝜑

𝑑𝑡
+ 𝜔0

2𝜑 =
𝜌

𝑙
𝑢                                                       (14) 

Case I: 𝑢 = 0: 
When the velocity of the attached mass in the pendulum's bob is null, that is 𝑢 = 0. Therefore, the differential 
equation (14) reduces to the following form: 

𝑑2𝜑

𝑑𝑡2
+ 2𝜌

𝑑𝜑

𝑑𝑡
+ 𝜔0

2𝜑 = 0                                                      (15) 

To solve this differential equation, one may apply the method of integral equations by transforming the 
equation from the differential form into an integral form [7], i.e.: 

𝜑(𝑡) = 𝑓(𝑡) + ∫ 𝑊(𝑥, 𝑡)𝜑(𝑥)𝑑𝑥                                             (16)
𝑡

0

 

where 𝑓(𝑡) = (1 + 2𝜌𝑡)𝜑0 and 𝑊(𝑥, 𝑡) = (𝑥 − 𝑡)𝜔0
2 − 2𝜌. To solve the integral equation (15), one may use the 

Laplace transform method, i.e.: 

ℒ[𝜑(𝑡)] = ℒ[𝑓(𝑡)] + ℒ[∫ 𝑊(𝑥, 𝑡)𝜑(𝑥)𝑑𝑥
𝑡

0

] 

Let 𝜑(𝑠) = ℒ[𝜑(𝑡)]and 𝐹(𝑠) = ℒ[𝑓(𝑡)] . The Laplace transform for the second term is somehow different, such 
that: 

ℒ[∫ ((𝑥 − 𝑡)𝜔0
2 − 2𝜌)𝜑(𝑥)𝑑𝑥

𝑡

0

] = (− 𝜔0
2ℒ[𝑡] + ℒ[2𝜌])𝜑(𝑠) = −(

𝜔0
2

𝑠2
+

2𝜌

𝑠
) 𝜑(𝑠) 

and 

𝐹(𝑠) = ℒ[(1 + 2𝜌𝑡)𝜑0 ] = (
2𝜌

𝑠2
+

1

𝑠
)𝜑0  

where the Laplace transform is defined as: 

ℒ[𝑦(𝑡)] = ∫ 𝑦(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

Then, after some mathematical manipulation, one gets: 

𝜑(𝑠) =
𝐹(𝑠)

1 +
𝜔0

2

𝑠2 +
2𝜌
𝑠

=

2𝜌 + 𝑠
𝑠2 𝜑0 

𝑠2 + 2𝜌𝑠 + 𝜔0
2

𝑠2

=
(2𝜌 + 𝑠)𝜑0 

𝑠2 + 2𝜌𝑠 + 𝜔0
2 

Then substituting 𝜑(𝑠) by ℒ[𝜑(𝑡)]One gets: 

ℒ[𝜑(𝑡)] =
(2𝜌 + 𝑠)𝜑0 

𝑠2 + 2𝜌𝑠 + 𝜔0
2 

By taking the inverse Laplace transform for both sides, one obtains: 

𝜑(𝑡) = ℒ−1[
(2𝜌 + 𝑠)𝜑0 

𝑠2 + 2𝜌𝑠 + 𝜔0
2] 

To solve the above equation, one may use the fractional decomposition method, i.e.: 
(2𝜌 + 𝑠)𝜑0 

𝑠2 + 2𝜌𝑠 + 𝜔0
2 =

𝐴

𝑠 − 𝛼
+

𝐵

𝑠 + 𝛽
 

where 𝛼 𝑎𝑛𝑑 𝛽 are the solutions of the dominator equations such that: 

𝛼 = −𝜌 + √𝜌2 − 𝜔0
2 𝑎𝑛𝑑 𝛽 = 𝜌 + √𝜌2 − 𝜔0

2 

Therefore, after some algebra, one finds: 

𝐴 + 𝐵 = 𝜑0 and 𝛽𝐴 − 𝛼𝐵 = 2𝜌𝜑0  
Solving for A and B, one obtains: 
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𝐴 =
√𝜌2 − 𝜔0

2 − 𝜌

2√𝜌2 − 𝜔0
2

𝜑0 and 𝐵 =
√𝜌2 − 𝜔0

2 + 𝜌

2√𝜌2 − 𝜔0
2

𝜑0  

Hence, the solution for the above equation is: 

𝜑(𝑡) =
√𝜌2 − 𝜔0

2 + 𝜌

2√𝜌2 − 𝜔0
2

𝜑0 ℒ
−1 [

1

𝑠 − 𝛼
] +

𝜌 − √𝜌2 − 𝜔0
2

2√𝜌2 − 𝜔0
2

𝜑0 ℒ
−1 [

1

𝑠 + 𝛽
] = 

√𝜌2 − 𝜔0
2 + 𝜌

2√𝜌2 − 𝜔0
2

𝜑0 𝑒
𝛼𝑡 +

𝜌 − √𝜌2 − 𝜔0
2

2√𝜌2 − 𝜔0
2

𝜑0 𝑒
𝛽𝑡 

Therefore, after doing some algebra, one obtains: 

𝜑(𝑡) = 𝜑0 𝑒
−𝜌𝑡[

𝜌

√𝜌2−𝜔0
2
(
𝑒
√𝜌2−𝜔0

2𝑡
−𝑒

−√𝜌2−𝜔0
2𝑡

2
) +

𝑒
√𝜌2−𝜔0

2𝑡
+𝑒

−√𝜌2−𝜔0
2𝑡

2
]          (17)             

Equation (17) represents the solution for the differential equation (14) by using the integral method. 
According to the sign of the quantity inside the radical, there will be three different states: 

State I: When (𝜌2 > ω0
2) the quantity inside the radical is real and positive, i.e.√𝜌2 − 𝜔0

2 > 0. In this case, the 

displacement function becomes: 

𝜑(𝑡) = 𝜑0𝑒
−𝜌𝑡[cosh (√𝜌2 − 𝜔0

2. 𝑡) +
𝜌

√𝜌2 − 𝜔0
2
sinh(√𝜌2 − 𝜔0

2. 𝑡)]        (18) 

Based on equation (18), it is clear that the behavior of the oscillator due to the presence of cosh(√𝜌2 − 𝜔0
2. 𝑡) 

and sinh (√𝜌2 − 𝜔0
2. 𝑡) terms of the equation, which are not periodic time functions, are not vibratory in 

nature. As time passes, the amplitude of oscillations of the damped oscillator will increase. This indicates 
that when the oscillator is shifted for the first time away from its equilibrium position, then, due to the 
restoring force of gravity, the oscillator will go far away from the relaxed position without executing any 
oscillations. The behavior of the oscillator in this case is called the positive heavy-damped oscillations. 
Therefore, if the damping factor  𝜌 is as large as possible, and for this damping 𝜌 has to be large; the 
oscillation is said to be heavily damped.   

State II: When (𝜌2 − 𝜔0
2 = 𝜀2 ≪ 1), the quantity (√𝜌2 − 𝜔0

2 = 𝜀 ≪ 1). In this case, equation (16) reveals that the 

angular displacement will be undefined. When the quantity (√𝜌2 − 𝜔0
2) approaches to zero, i.e. √𝜌2 − 𝜔0

2 ≪ 1, 

then the fact that (𝑒𝑥 ≅ 1 + 𝑥 ∀ 𝑥 ≪ 1) will be used to treat this problem. Thus, the equation of displacement 
becomes: 

𝜑(𝑡) = 𝜑0𝑒
−𝜌𝑡[

1 + √𝜌2 − 𝜔0
2𝑡 + 1 − √𝜌2 − 𝜔0

2𝑡

2
+

𝜌

√𝜌2 − 𝜔0
2

1 + √𝜌2 − 𝜔0
2𝑡 − 1 + √𝜌2 − 𝜔0

2𝑡

2
] 

Therefore: 

𝜑(𝑡) = 𝜑0𝑒
−𝜌𝑡(1 + 𝜌𝑡) = 𝜑0(1 + 𝜌𝑡)𝑒−𝜌𝑡                                (19) 

It can be seen from equation (19) that the behavior of the oscillator is not oscillatory, and the amplitude of 
the oscillations tends to a very high level in a very short time. In such a case, the reaction of the oscillator 
is called the negative critically damped oscillation. 

State III: When (𝜌2 − 𝜔0
2 < 0) the quantity (√𝜌2 − 𝜔0

2) becomes a negative  quantity, i.e. √𝜌2 − 𝜔0
2 = 𝑖√𝜔0

2 − 𝜌2 , 

then the angular displacement function will be: 

𝜑(𝑡) = 𝜑0𝑒
−𝜌𝑡[

𝑒
𝑖√𝜌2−𝜔0

2.𝑡
+ 𝑒

−𝑖√𝜌2−𝜔0
2𝑡

2
+

𝜌

√𝜌2 − 𝜔0
2

𝑒
𝑖√𝜌2−𝜔0

2.𝑡
− 𝑒

−𝑖√𝜌2−𝜔0
2𝑡

)

2𝑖
] 

 Using Euler's formula, one gets: 

𝜑(𝑡) = 𝜑0𝑒
−𝜌𝑡[cos  (√𝜔0

2 − 𝜌2𝑡) +
𝜌

√𝜔0
2 − 𝜌2

sin (√𝜔0
2 − 𝜌2𝑡)] 

Using some trigonometric identities, one has: 

𝜑(𝑡) = 𝜑0𝑒
−𝜌𝑡 ∗ 𝐴𝑐𝑜𝑠(√𝜔0

2 − 𝜌2𝑡 − 𝛿) 

where 𝐴 =
𝜔0

𝜔
 and 𝛿 = tan−1(

𝜌

𝜔
). Therefore: 

   𝜑𝑢=0(𝑡) = 𝑍𝑒−𝜌𝑡cos (√𝜔0
2 − 𝜌2𝑡 − 𝛿)                                            (20) 

where 𝑍 = 𝐴𝜑0 [8]. 
 
The case of the under-damped oscillation will be the core of the study in this work. 
 

• Exponential envelope/time constant 

The relaxation time constant is defined as the reciprocal of the damping coefficient, i.e. 𝜏 =
1

𝜌
 . Thus at 

𝜌 = 0.01 leads 𝜏 = 100 𝑠  (slow decay), while at 𝜌 = 0.04 leads to 𝜏 = 25 𝑠  (faster decay). This matches the 
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panels. When 𝜌 = 0.01 trace remains appreciable at 𝑡 = 100 𝑠, whereas at 𝜌 = 0.04 The trace is essentially 
extinguished by that time. 
 

• Damped oscillation frequency 

The damped angular frequency is defined as = √𝜔0
2 − 𝜌2 . Because ρ is small relative to 𝜔0 in these 

examples, the change in period is modest; nevertheless, increasing ρ produces a slight reduction in 
oscillation frequency (longer period) visible as a subtle stretching of the oscillation in the higher-ρ panels. 
 

• Energy and mechanism 
Even with no external viscous friction, mass growth (positive𝑚̇) removes kinetic energy from the moving 
point particle via the mass-addition process; mathematically, this appears as the 2𝜌𝜑̇ term (a dissipative 
term). Hence, higher ρ acts like stronger damping and accelerates the decay of mechanical energy. 

 
Fig.1. The change of the angular displacement as a function of time at a fixed 𝝎𝟎 and different ρ 

when 𝒖 = 𝟎 

 

 
Fig.2. The 3D phase space of the angular displacement as a function of time at fixed 𝝎𝟎 and 

different ρ when 𝒖 = 𝟎 

 
Effect of u = 0 (attached-mass velocity) on the dynamical response: 
When the velocity of the attached mass relative to the pendulum, u, is zero, the equation of motion reduces 
to a homogeneous damped oscillator. There is no external forcing from mass exchange, so the pendulum’s 
oscillations decay monotonically (at an exponential envelope) toward the equilibrium position. In contrast, 
a nonzero u introduces a forcing term that can shift the equilibrium, sustain oscillations, or even inject 
energy depending on its sign and time dependence. 
 
The Energy of the Variable Mass Pendulum 
The total energy of a dynamical physical system under any physical circumstances is the sum of its kinetic 
energy and its potential energy, and for the case of a simple physical pendulum, it is given as:  

𝐸 = 𝑇 + 𝑈 =
1

2
𝑚𝑙2𝜑̇2 + 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜑) =

1

2
𝑚𝑙2𝜑̇2 +

1

2
𝑚𝑔𝑙𝜑2 
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Or 

𝐸 =
1

2
𝑚(𝑡)𝑙2(𝜑̇2 + 𝜔0

2𝜑2)                                               (21) 

Differentiate equation (19) with respect to time to obtain the expression for angular velocity as follows: 

𝜑̇(𝑡) =
𝑑𝜑

𝑑𝑡
= −𝑍𝑒−𝜌𝑡(𝜌cos(𝜔𝑡 − 𝛿)+ 𝜔 sin(𝜔𝑡 − 𝛿) = −𝑍𝜔0𝑒

−𝜌𝑡cos (𝜔𝑡 − 𝜇) 

where 𝜇 = 𝛿 + 𝜃 and 𝜃 = tan−1 𝜔

𝜌
One may deduce that 𝜇 =

𝜋

2
 under the condition that  𝜑̇(0) = 0, therefore, the 

above equation will reduce to the following equation: 
𝜑̇(𝑡) = −𝑍𝜔0𝑒

−𝜌𝑡 sin𝜔𝑡                                                (22) 
Then, inserting equation (21) into equation (20), the total energy becomes: 

𝐸(𝑡) =
1

2
𝑚0𝑙

2𝑍2𝜔0
2𝑒−𝜌𝑡(𝑠𝑖𝑛2𝜔𝑡 + 𝑐𝑜𝑠2(𝜔𝑡 − 𝛿)) 

Or 

𝐸(𝑡) = 𝑘𝑒−𝜌𝑡  𝜓(𝑡)                                                                       (23) 

where 𝑘 =
1

2
𝑚0𝑙

2𝑍2𝜔0
2 𝑎𝑛𝑑 𝜓(𝑡) = 𝑠𝑖𝑛2𝜔𝑡 + 𝑐𝑜𝑠2(𝜔𝑡 − 𝛿). From the expression of 𝜓(𝑡) one may notice that it is 

a periodic function, i.e.: 

𝜓(𝑡 + 𝑇) = 𝜓(𝑡) 
Therefore: 

𝐸(𝑡 + 𝑇) = 𝑘𝑒−𝜌(𝑡+𝑇)𝜓(𝑡 + 𝑇) = 𝑘𝑒−𝜌𝑡  𝜓(𝑡)𝑒−𝜌𝑇 = 𝐸(𝑡)𝑒−𝜌𝑇                   (24) 
at t = 0, 𝐸(𝑇) = 𝐸(0)𝑒−𝜌𝑇. 

at t = T, 𝐸(2𝑇) = 𝐸(𝑇)𝑒−𝜌𝑇 = 𝐸(0)𝑒−2𝜌𝑇. 
at t = 2T, 𝐸(3𝑇) = 𝐸(2𝑇)𝑒−𝜌𝑇 = 𝐸(0)𝑒−3𝜌𝑇. 

at t = 3T, 𝐸(4𝑇) = 𝐸(3𝑇)𝑒−𝜌𝑇 = 𝐸(0)𝑒−4𝜌𝑇. 
at t = nT, 𝐸((𝑛 + 1)𝑇) = 𝐸(𝑛𝑇)𝑒−𝜌𝑇 = 𝐸(0)𝑒−𝑛𝜌𝑇. 

Therefore, the total energy of the system now becomes 𝐸(𝑡) = 𝐸(0)𝑒−𝜌𝑡 = 𝑘 𝜓(0) = 𝑘𝑐𝑜𝑠2(𝛿). After doing some 
mathematical manipulation, equation (24) becomes: 

𝐸𝑢=0(𝑡) = 𝐸(0)𝑒−𝜌𝑡 = 𝑘𝑐𝑜𝑠2𝛿𝑒−𝜌𝑡 = 𝑘 (1 − (
𝜌

𝜔0

)
2

)𝑒−𝜌𝑡                                (25) 

Equation (25) states that the energy 𝐸(𝑡)  decays exponentially in time with a rate constant 𝜌 > 0 . 

Differentiating gives the simple first-order differential law: 
𝑑𝐸(𝑡)

𝑑𝑡
= −𝜌𝐸(𝑡) 

Hence, the instantaneous rate of energy loss is proportional to the current energy. 

 
Fig.3. The energy of the variable mass pendulum as a function of time at different values of mass 

growth rate 
 

This law describes purely exponential decay of the energy envelope; any fast oscillatory modulation of the 
instantaneous energy is carried separately by a T-periodic factor (if present) and does not affect the envelope. 
The formula implicitly assumes linear, time-homogeneous damping behavior (no parametric pumping or 

non-linear energy input) and that the normalization chosen makes𝐸(0) = 𝑐𝑜𝑠2𝛿. If mass, stiffness, or external 
forcing varies in time in ways that break these assumptions, the decay need not be purely exponential. 
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The four panels display the unequivocal, exponentially fast extinction of the pendulum’s mechanical energy 
as the mass-growth rate ρ increases. Each curve obeys equation (25): 

 
Table 1. The values of the time constant at different values of the mass growth rate. 

 
 
  
 
 
 
 

So the energy envelope decays purely exponentially with time constant 𝜏 =
1

𝜌
. As ρ rises from 0.01 to 0.04 

the decay accelerates dramatically as shown in the table.1 and therefore the time to reduce the energy to a 
few percent of its initial value (roughly 𝑡 ≈ 3𝜏) shrinks from ∼300 to ∼75 time units. The initial energy 𝐸(0) =

𝑘 (1 − (
𝜌

𝜔0
)
2

) is only slightly reduced by ρ when ρ ≪ ω0; the dominant effect visible in the plots is the 

envelope’s exponential attenuation. All curves are strictly monotonic and show no long-term oscillatory 
persistence: increasing mass-growth rate does not supply sustaining energy; it suppresses the oscillations 
by steepening the exponential envelope.  
Case II: 𝑢 = 𝑢0 
When the velocity of the attached mass in the pendulum's bob is not zero, i.e., it is a constant. Then the 
differential equation (14) is going to be: 
𝑑2𝜑

𝑑𝑡2
+ 2𝜌

𝑑𝜑

𝑑𝑡
+ 𝜔0

2𝜑 =
𝜌

𝑙
𝑢0                                                      (26) 

The differential equation (26) is going to be solved via the method of Green's function as follows [8]: 

Let 𝐿 be the linear operator of the system defined as 𝐿 = 𝐷𝑡𝑡 + 2𝜌𝐷𝑡 + 𝜔0
2. The Green's function must satisfy 

the following two conditions: 

{
𝐿 [𝐺(𝑡)] = 𝛿(𝑡)     ∀ 𝑡 > 0

𝐺(𝑡) = 0      ∀ 𝑡 < 0
 

Hence, the function 𝜑(𝑡) becomes: 

𝜑(𝑡) = ∫𝐺(𝑡 − 𝜏)𝐹0𝑑𝜏

𝑡

0

                                                      (27) 

If 𝑡 ≠ 0 →  𝛿(𝑡) = 0 → 𝐿 𝐺(𝑡) = 0, therefore 𝐿𝜑 = 0: 

𝐷𝑡𝑡𝜑 + 2𝜌𝐷𝑡𝜑 + 𝜔0
2𝜑 = 0 

Therefore, the homogeneous solution will be: 

𝜑1.2 = 𝑒−𝜌𝑡{𝑐𝑜𝑠ω𝑡, 𝑠𝑖𝑛ω𝑡} 

where ω = √𝜔0
2 − ρ2 . Insert causality by taking for 𝑡 > 0, then: 

𝐺(𝑡) = 𝐶𝑒−𝜌𝑡𝑠𝑖𝑛ω𝑡                                                               (28) 
Since sin (0) = 0, then the continuity at 𝑡 = 0 is automatic. The jump condition from integrating 𝐿[ 𝐺(𝑡)] =
𝛿(𝑡) at 𝑡 = 0  is: 

𝐺′(0+) − 𝐺′(0−) = 1 → 𝐺′(0+) = 1 → 𝐶 =
1

ω
 

Therefore, equation (28) becomes: 

𝐺(𝑡) =
1

ω
𝑒−𝜌𝑡𝑠𝑖𝑛ω𝑡 

Imposing the external force 𝐹0 = 𝜌
𝑢

𝑙
  in equation (27), one gets: 

𝜑(𝑡) =
𝐹0

ω
∫𝑒−𝜌𝑝𝑠𝑖𝑛ω𝑝𝑑𝑝

𝑡

0

=
𝐹0

ω
𝑆(𝑡) 

where 𝑆(𝑡) = ∫ 𝑒−𝜌𝑠𝑠𝑖𝑛ω𝑠𝑑𝑠
𝑡

0
=

1

𝜌2+ω2 (1 − 𝑒−𝜌𝑡 (𝑐𝑜𝑠ω𝑡 +
𝜌

ω
𝑠𝑖𝑛ω𝑡)) 

Therefore, the particular solution will be: 

𝜑(𝑡)𝑝 =
𝜌𝑢0

𝑔
(1 − 𝑒−𝜌𝑡 (𝑐𝑜𝑠ω𝑡 +

𝜌

ω
𝑠𝑖𝑛ω𝑡))                            (29) 

The general solution is the sum of the homogeneous and the particular parts: 

𝜑𝑢=𝑢0
(𝑡) = 𝜑ℎ(𝑡) + 𝜑𝑝(𝑡) = 𝜑𝑢=0(𝑡) +

𝜌𝑢0

𝑔
(1 − 𝑒−𝜌𝑡 (𝑐𝑜𝑠ω𝑡 +

𝜌

ω
𝑠𝑖𝑛ω𝑡)) 

Doing some algebraic processes, finally, one gets: 
𝜑𝑢=𝑢0

(𝑡) = 𝛼𝜑𝑢=0(𝑡) + 𝛽                                             (30) 

where 𝜑𝑢=0(𝑡) is the angular position function for the case of 𝑢 = 0, 𝛼 = (1 −
𝜌𝑢0

𝑔𝜑0
) and 𝛽 =

𝜌𝑢0

𝑔
.  

ρ(s−1) τ(s) 
0.01 100 

0.02 50 

0.03 33.3 

0.04 25 
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Fig.4. The change of the angular displacement as a function of time at fixed 𝝎𝟎 and ρ when 𝒖 =

[𝟏, 𝟑, 𝟓, 𝟕] 
Effect of  𝒖 = 𝒖𝟎 on the System’s Dynamical Response: 
As u increase the final equilibrium (long-time mean of 𝜑(𝑡)) shifts upward: larger u produces larger positive 
steady offsets. In the (figure), this appears as the trace settling around progressively larger positive values 
when moving from u = 1 to u = 7. 
The transient oscillation amplitude and the decay envelope are similar between panels (because ρ and ω0 
are fixed), but the instantaneous waveform near t = 0 and the approach to the nonzero offset change slightly 
due to the superposition of the homogeneous and particular solutions. 
 
Quantitative/physical interpretation: 

• Decay rate unchanged by u: The exponential envelope ∝ 𝑒−𝜌𝑡 is independent of the forcing magnitude 

u; hence, the transient lifetime 𝜏 =
1

𝜌
 is unchanged among panels. This explains why the oscillation 

amplitude decays at the same rate in all four subplots. 

• Steady offset scales linearly with u: From 𝜑𝑝(𝑡) =
𝜌𝑢0

𝑔
 we expect the long-time mean to be proportional 

to u. The plot confirms that larger u produces proportionally larger static deflection. 

 
Fig.5. The 3D phase space of the angular displacement as a function of time at fixed 𝝎𝟎 

and ρ when 𝒖 = [𝟏, 𝟑, 𝟓, 𝟕] 
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• Oscillation frequency essentially constant: Because u is constant in time (no time-harmonic forcing), 

there is no new forcing frequency introduced; the oscillation period remains approximately 
2𝜋

𝜔
. Only if u 

are time-dependent (e.g., harmonic) would you see forced oscillations at the forcing frequency and 
possible resonance effects. 

• Energy & momentum viewpoint: Constant nonzero u corresponds to the attached mass joining the 
bob with a finite relative speed: momentum transfer produces a persistent bias (nonzero mean) in the 

bob position. The mass-growth term 2𝜌
𝑑𝜑

𝑑𝑡
 still dissipates oscillatory kinetic energy, so oscillations decay 

while the mean shifts to 𝜑𝑝. 

The velocity of the system in this case is: 
𝜑̇𝑢=𝑢0

(𝑡) = 𝛼𝜑̇𝑢=0(𝑡)                                                       (31) 

Therefore, inserting equations (28) and (29) into the energy equation (21), one gets: 

𝐸𝑢=𝑢0
(𝑡) = 𝛼2𝐸𝑢=0(𝑡) +

1

2
𝑚0𝑙

2𝜔0
2𝛽2𝑒𝜌𝑡 + 𝛼𝛽𝑚0𝑙

2𝑍𝑐𝑜𝑠(𝜔𝑡 − 𝛿)             (32) 

where 𝐸𝑢=0(𝑡) = 𝑘 (1 − (
𝜌

𝜔0
)
2

) 𝑒−𝜌𝑡 is the total energy of the system when 𝑢 = 0. 

 
Fig.6. The variation of the total energy as a function of time at fixed 𝝎𝟎 and ρ when 𝒖 =

[𝟏, 𝟑, 𝟓, 𝟕]𝒎/𝒔 
 

(The figure) captures the transition from damping-dominated decay (u = 1) to fluctuation-dominated 
dynamics (u = 5,7) m/s. At small u, the pendulum energy primarily dissipates due to the exponential mass 

growth damping. As u increases, however, the coupling terms proportional to 𝛼𝛽 and 𝛽2𝑒𝜌𝑡 become more 
prominent, injecting oscillatory energy back into the system. This competition between dissipation (through 
ρ) and driving (through u) dictates the overall profile of E (t). 
In essence, higher values of u act as an effective parametric drive, enriching the energy landscape with 
oscillations and delaying pure exponential decay. The figure beautifully illustrates how the attached mass 
velocity transforms the pendulum from a simple damped system into one exhibiting rich oscillatory energy 
dynamics. 
Case III: 𝑢 = 𝑢0𝑐𝑜𝑠Ω𝑡 
When the velocity of the attached mass in the pendulum's bob varies with time.  Then the differential 
equation (14) is going to be: 
𝑑2𝜑

𝑑𝑡2
+ 2𝜌

𝑑𝜑

𝑑𝑡
+ 𝜔0

2𝜑 = 𝐹0𝑐𝑜𝑠Ω𝑡                                     (33) 

where 𝐹0 =
𝜌

𝑙
𝑢0 . To solve the above non-homogeneous differential equation, one may use the following 

procedure [9].: 

𝑍 = 𝜑 + 𝑖𝜓                                                                          (34) 
Let 𝑍 be a solution for the following differential equation: 

𝑑2𝑍

𝑑𝑡2
+ 2𝜌

𝑑𝑍

𝑑𝑡
+ 𝜔0

2𝑍 = 𝐹0𝑒
𝑖Ω𝑡                                                   (35) 

Assume the solution as 𝑍 = 𝑍0𝑒
𝑖Ω𝑡 → 𝑍̇ = 𝑖Ω𝑍0𝑒

𝑖Ω𝑡 → 𝑍̈ = −Ω2𝑍0𝑒
𝑖Ω𝑡, substituting all of these in equation (31), 

one gets: 
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(𝜔0
2 − Ω2 + 𝑖2𝜌Ω)𝑍0𝑒

𝑖Ω𝑡 = 𝐹0𝑒
𝑖Ω𝑡 

Finally, one obtains: 

𝑍0 =
𝐹0

(𝜔0
2 − Ω2 + 𝑖2𝜌Ω)

=
𝐹0

𝑤𝑒𝑖𝜃
 

where 𝑤 = √(𝜔0
2 − Ω2)2 + 4(𝜌Ω)2 and 𝜃 = tan−1 2𝜌Ω

𝜔0
2−Ω2 . Then: 

𝑍 =
𝐹0

𝑤𝑒𝑖𝜃
𝑒𝑖Ω𝑡 =

𝐹0

𝑤
𝑒𝑖(Ω𝑡−𝜃)                                                      (36) 

 
Fig.7. show variations in the angular displacement function as a function of time at different ρ 

and fixed 𝝎𝟎 and 𝜴 when 𝒖 = 𝒖𝟎𝒄𝒐𝒔𝜴𝒕 

 
Comparing equations (30) with equation (32) and taking the real part and ignoring the imaginary one, one 
gets: 

𝜑(𝑡,Ω) =
𝐹0

𝑤
cos( Ω𝑡 − 𝜃) = 𝐵(Ω)cos ( Ω𝑡 − 𝜃)                                     (37) 

where 𝐵(Ω) =
𝐹0

𝑤
 . Equation (33) represents how the angular position of the variable mass pendulum changes 

over time as the velocity of the attached mass to the system varies with time. 
(Figure 5) illustrates the variation of the angular displacement function 𝜑(𝑡) as a function of time at fixed 

natural frequency ω0 and excitation frequency Ω, when the velocity of the attached mass varies periodically. 
The external excitation originates from the time-varying velocity of the attached mass. When ρ is small, 
dissipation is weak, and the system exhibits a relatively strong oscillatory response. As ρ increases, energy 
losses due to damping dominate, leading to a progressive reduction in the amplitude of oscillations. 
Importantly, the frequency of oscillations remains essentially unchanged, as it is governed by the fixed 
parameters ω0 and Ω. 
The amplitude function 𝐵(Ω) is a function of the external excitation frequency Ω. The maximum value 

attained by the amplitude function 𝐵(Ω) can be given by the following condition, i.e. 
𝑑𝐵

𝑑Ω
= 0 such that: 

𝑑𝐵

𝑑Ω
= −

𝐹0

2
((𝜔0

2 − Ω2)2 + 4(𝜌Ω)2)−
3
2. (−4Ω(𝜔0

2 − Ω2) + 8Ω𝜌2                  (38) 

 
Fig.8. Variations in the amplitude function B (𝜴) as a function of angular frequency 𝜴 at different 

ρ and fixed  𝝎𝟎 when 𝒖 = 𝒖𝟎𝒄𝒐𝒔𝜴𝒕 
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Equating equation (34) to zero and doing some algebra, one gets the critical external frequency at which the 
amplitude function attains its maximum: 

Ω∗ = √𝜔0
2 − 2𝜌2                                                                  (39) 

At this critical value of the external frequency, the variable-mass pendulum system attains the resonance 
case. From (figure 8) one can notice that for Ω < Ω∗ the amplitude function B(Ω) is increasing for all values 
of the mass growth rate and Ω > Ω∗ it is decreasing for the same set of values for the mass growth rate. The 
velocity of the attached mass is given by 𝑢 = 𝑢0𝑐𝑜𝑠Ω𝑡, provides the oscillatory driving force for the system. 
(Figure 8) shows that increasing the mass growth rate ρ suppresses and broadens the resonance response. 
 
Power is transferred from the external driving source to the oscillator 
To sustain steady-state oscillations, the external driving force must continually compensate for the energy 
dissipated during each cycle due to resistance. We now establish a key result: in steady state, the amplitude 
and phase of a driven oscillator naturally adjust in such a way that the average power delivered by the driving 
force is exactly balanced by the power lost through frictional dissipation. The instantaneous power P delivered 
at any moment is simply given by the product of the instantaneous driving force and the corresponding 
instantaneous velocity, i.e.: 
𝑃 = −𝐹0𝑐𝑜𝑠Ω𝑡 . 𝐵′ sin(Ωt − θ) = −𝐹0𝐵′𝑐𝑜𝑠Ω𝑡 sin(Ωt − θ)              (40)  

where 𝐵′ =
𝐹0

√(
ω0

2

Ω
−Ω)2+4ρ2

 . The average power supplied by the outer driving force is defined as the total work 

done in one oscillation per one period of oscillation, in symbols: 

〈𝑃〉 =
1

𝑇
∫𝑃 𝑑𝑡 =

−𝐹0𝐵′

𝑇

𝑇

0

∫𝑐𝑜𝑠Ω𝑡 sin(Ωt − θ)𝑑𝑡

𝑇

0

 

Expanding sin(Ωt − θ) and insert it inside the integral. One gets: 

〈𝑃〉 =
−𝐹0𝐵′

𝑇
∫ (𝑐𝑜𝑠Ω𝑡 sinΩt 𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠2Ω𝑡 𝑐𝑜𝑠𝜃)𝑑𝑡

𝑇

0

 

Or 

〈𝑃〉 =
−𝐹0𝐵′

𝑇
[∫𝑐𝑜𝑠Ω𝑡 sinΩt 𝑐𝑜𝑠𝜃𝑑𝑡 − ∫𝑐𝑜𝑠2Ω𝑡 𝑐𝑜𝑠𝜃

𝑇

0

𝑑𝑡

𝑇

0

                (41) 

Using the facts that ∫ 𝑐𝑜𝑠Ω𝑡 sinΩ𝑡 𝑐𝑜𝑠𝜃 𝑑𝑡 = 0 
𝑇

0
𝑎𝑛𝑑 

1

𝑇
∫ 𝑐𝑜𝑠2Ω𝑡  𝑑𝑡 =

1

2

𝑇

0
Then equation (41) becomes: 

〈𝑃〉 =
𝐹0

2

2𝐼𝑚
𝑐𝑜𝑠𝜃                                                              (42) 

where 𝐼𝑚 = √(
ω0

2

Ω
− Ω)2 + 4ρ2 . The energy transported by the external driving force is not retained within the 

variable mass-pendulum system; instead, it is dissipated as work done in sustaining the motion of the 
system. The time rate variation of work done by the damping force is: 

𝑃 = 2𝜌𝜑̇𝜑̇ = 2𝜌𝜑̇2 = 2𝜌
𝐹0

2

𝐼𝑚
2 𝑐𝑜𝑠2( Ωt − θ)                           (43) 

Taking the average for equation (43) and using the above facts, one obtains: 

〈𝑃〉 = 𝜌
𝐹0

2

𝐼𝑚
2 

It is known that the average power supplied by the outer driving force is equal to the average power 
dissipated by the damping term, i.e.: 

𝐹0
2

2𝐼𝑚
𝑐𝑜𝑠𝜃 = 𝜌

𝐹0
2

𝐼𝑚
2 

Solving for 𝑐𝑜𝑠𝜃One gets: 

𝑐𝑜𝑠𝜃 =
2𝜌

𝐼𝑚
 

When 𝜃 = 0 then 𝐼𝑚 = 2𝜌, therefore, the average power for the system attains its maximum value, i.e. 

〈𝑃〉𝑚𝑎𝑥 =
𝐹0

2

4ρ
                                                            (43) 

But 𝐹0 =
𝜌

𝑙
𝑢0, hence equation (43) becomes: 

〈𝑃〉𝑚𝑎𝑥 =
𝜌

4𝑙
𝑢0

2 

 
The Quality Value of the system 
The quality factor or the Q-value of the oscillator is a physical parameter used to measure the rate of energy 
decay as time passes. In the case of a forced damped oscillator, the expression for the Q-value is given by: 
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𝑄 =
𝜔0

Ω2 − Ω1

                                                                 (44) 

where 𝜔1  and 𝜔2 are the frequencies at which 〈𝑃〉 =
1

2
〈𝑃〉𝑚𝑎𝑥, i.e.: 

𝜌
𝐹0

2

𝐼𝑚
2 =

𝐹0
2

8ρ
→ 𝐼𝑚

2 = 8ρ2 → (
ω0

2

Ω
− Ω)2 + 4ρ2 = 8ρ2 → (Ω −

ω0
2

Ω
)2 = 4ρ2 

Then: 

Ω −
ω0

2

Ω
= ±2𝜌 

If Ω2 > Ω1, hence: 

Ω2 −
ω0

2

Ω2

= 2𝜌 

Ω1 −
ω0

2

Ω1

= −2𝜌 

Cancelling ω0
2 from both equations, one obtains: 

Ω2 − Ω1 = 2𝜌                                                                (45) 
Inserting equation (45) into equation (44), one finally gets the Q-value for the system: 

𝑄 =
𝜔0

2𝜌
                                                                                 (46) 

• Low ρ (0.01): The system is under-damped. It has a high Q-factor, leading to a tall, narrow peak. The system 
is very sensitive to frequencies near ω₀. 

• Higher ρ (0.02, 0.03): The system becomes more over-damped. The Q-factor decreases, leading to a shorter, 
wider peak. The system is less sensitive to the exact driving frequency but has a more robust response over 
a range of frequencies. 

Table 2. shows the Q-value of the system at different values of the mass growth rate in terms of 
the natural frequency. 

𝜌(𝑠−1) 𝑄 

0.01 50𝜔0 

0.02 25𝜔0 

0.03 16.6𝜔0 

 
In essence, the mass growth rate ρ directly controls the amount of damping in the system, thereby 
determining how pronounced and selective the resonant response to the external drive   𝑢 = 𝑢0𝑐𝑜𝑠Ω𝑡 will be. 
 

Conclusion 
In this paper, the suggested interpretations and analysis establish a clear, strong connection between the 
kinetics of the time variation of mass and pendulum dynamics: the exponential increase in the pendulum's 
inertia (mass) creates an analytically tractable damping behavior which contributes in the dissipation of the 
pendulum's energy and the sensitivity of the spectral response. On the other hand, the kinematics of the 
transferred mass controls the steady offsets and the responses of the external force. The combination of the 
effects specifies the stability, transient decay rates, and resonance amplification. The suggested model in 
this paper provides a very powerful tool and techniques for experimental or natural systems in which the 
mass is added or lost in a continuous way, and it clarifies the parameters (notably ρ and the spectral content 
of u (t) that are most influential for control, sensing, or instability avoidance. 
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