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Abstract 
Antibiotic resistance (AMR) is one of the most serious global health challenges of the 21st century, 

calling for the search for natural alternatives to combat resistant bacteria. This study aimed to 
evaluate the antibacterial activity of some endophytic fungi isolated from the Cyrene region of Libya, 
including the species Stagonosporopsis sp. (PQ182696), Fusarium sp. (PQ178952), and Penicillium 
chrysogenum (PQ178955). Secondary extracts were obtained using ethyl acetate and tested against 
clinical isolates of Enterococcus spp. (PV606376) and Klebsiella pneumoniae (PV606419) using the 

disc diffusion method and minimum inhibitory concentration (MIC) test. The results showed that 
Fusarium sp. and Stagonosporopsis sp. extracts exhibited significant inhibitory activity, especially 
against Enterococcus spp. (with an inhibition zone of 2.89 ± 1.67 mm at 50% concentration), while 
the effect of Penicillium chrysogenum was weak and inconsistent. MIC values ranged between 125–
150 µg/mL for Enterococcus spp. and 160–175 µg/mL for K. pneumoniae, indicating acceptable 
efficacy in the initial stages of antibiotic screening. These results confirm that endophytic fungi from 

the Cyrene region represent a promising source of bioactive compounds with antibacterial activity, 

particularly against Gram-positive bacteria. Further studies are needed to isolate the active 
compounds, determine their mechanism of action, and evaluate their efficacy in biological models. 
Keywords. Endophytic fungi, Evaluation, Bioactive Metabolites, Fusarium, Antimicrobial Resistance. 

 

Introduction 
Antimicrobial resistance (AMR) has emerged as one of the greatest global public health threats of the 21st 

century. The failure of conventional antibiotics to combat resistant pathogens like Staphylococcus aureus 

and Klebsiella pneumoniae has intensified the search for novel compounds from natural sources [1]. 

Endophytic fungi, known to produce a wide spectrum of bioactive metabolites, offer a promising yet 
underexploited reservoir of antimicrobial agents [2-3]. 

Endophytic fungi have emerged as a promising reservoir of novel antimicrobial agents, largely owing to their 

capacity to synthesize diverse secondary metabolites such as polyketides and peptides. These compounds 

are typically produced through the action of polyketide synthase (PKS) and non-ribosomal peptide synthase 

(NRPS) pathways, which are well-known for generating structurally complex and biologically potent 
molecules. Notably, metabolites including prenylated indole alkaloids and fumaric acid have demonstrated 

significant antibacterial and antifungal activities, with particular effectiveness against multidrug-resistant 

pathogens. The study demonstrates the potential of these fungi to address antimicrobial resistance and their 

applications in sustainable agriculture and bioremediation [4]. The synthesis of antibiotics through 

metabolic pathways is highly effective in protecting plants from diseases. Plant pathogens can be inhibited 

by a variety of bioactive compounds, but few of these have been investigated [5]. 
Endophytes produce diverse metabolites, most of which exhibit antimicrobial properties. These metabolites 

include: flavonoids, polyketides, alkaloids, peptides, quinones, steroids, phenols, [6]. The Cyrene region in 

northeastern Libya, with its rich and underexplored plant diversity, may harbor unique endophytic species 

with significant pharmaceutical potential. This study investigates the antibiotic activity of selected fungal 

isolates and explores their suitability for development as natural antimicrobial agents. 
Endophytes represent an important, yet often overlooked, component of the microbial biodiversity associated 

with plants. Endomycetes have emerged as a new source of bioactive compounds with antimicrobial 

properties. Plants are a natural choice for studying endophytes due to their proven medicinal properties. 

Numerous studies have been conducted on various medicinal plants and their therapeutic potential in 

treating various diseases [7]. 

Endophytic fungi are recognized as a valuable reservoir of novel bioactive compounds, many of which 
possess rare and unique chemical structures seldom encountered in nature. The ongoing search for new 

antibiotics is of critical importance in addressing the escalating problem of bacterial resistance, a challenge 

that continues to threaten global health systems. Historically, fungi have provided some of the most 

transformative drugs in medicine, contributing significantly to the treatment of chronic infections, 

autoimmune disorders, and conditions such as hypercholesterolemia. Notable examples of clinically 
approved antibiotics derived from fungi include penicillin G, penicillin V, cephalosporin G, fusidic acid, and 

pleuromutilin [8-9]. Endomycetes are a highly diverse, multiphyletic ecological group of fungi, mostly 
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belonging to the Ascomycota and Anaerobic Fungi [10]. It is estimated that nearly 300,000 plant species 

exist on Earth, with each species serving as a host to one or more endophytic organisms. Many of these 

endophytes exhibit host specificity, colonizing specific plants and establishing unique ecological 

relationships. 
Filamentous fungi and vesicular mycorrhizal fungi (VAM) are the most important groups classified as 

endophytes. Some of these belong to the genera Trichoderma, Penicillium, Aspergillus, Purpureocillium, 

Fusarium, Claviceps, Metarhizium, Xylaria, Curvularia, Cladosporium, Drisclera, Alternaria, and others, and 

colonize roots, shoots, or leaves [11-12]. 

Fungal secondary metabolites represent a diverse class of bioactive compounds with broad pharmaceutical 

and therapeutic relevance, including antiviral, antifungal, antibacterial, antitumor, and anticancer activities. 
Beyond their medical potential, many of these metabolites also act as sources of plant growth regulators and 

hormones. Certain metabolites are associated with the secretion of extracellular enzymes, such as 

phosphatases, which facilitate nutrient acquisition by converting insoluble phosphates into soluble forms 

readily available for plant uptake. Additionally, fungal metabolites have been reported to strengthen host 

immune responses, thereby mitigating the impact of pathogenic infections and limiting tissue damage [13]. 

Plant-associated biocontrol systems further contribute by producing a range of protective proteins that not 
only defend plants against lethal diseases but also stimulate their overall growth and development [14]. 

 

Materials and methods 

Endophytic fungal source 
Three endophytic fungal isolates, selected based on their taxonomic diversity, were used in this study. The 

isolates F2 (molecular identification: stagonosporopsis sp., accession no: PQ182696), F3 (Fusarium sp., 

PQ178952), and F6 (Penicillium chrysogenum, PQ178955) were obtained from a previous work group [15]. In 

the aforementioned study, these fungi were isolated from intact plant tissues collected from the Cyrene 

region, Libya, and purified and molecularly identified. For use in the current experiments, the isolates were 

grown on potato dextrose agar (PDA) at 25°C for 7 days. 

 
Extraction of Secondary Metabolites 

Fungal isolates were cultured in 250 mL PDA broth for 14 days under static conditions. Cultures were 

filtered and extracted with ethyl acetate (1:1, v/v) three times. The organic phase was collected, dried using 

rotary evaporation at 40°C, and the crude extract stored at −20°C. Extracts were reconstituted in DMSO for 

testing at concentrations of 25%, 50%, 75%, and 100%. Solid residues obtained by evaporating organic 
extracts under reduced pressure were used for the evaluation of antibacterial activity [16]. 

 

Antibacterial Activity Assay 

The antimicrobial activity of fungal extracts was evaluated using the disc diffusion method against selected 

clinical isolates obtained from Albayda Hospital. The isolates were identified and coded as follows: 

Enterococcus sp. (PV606376) and Klebsiella pneumoniae (PV606419). Sterile paper discs (6 mm diameter) 
were impregnated with 20 µL of each fungal extract and subsequently placed onto Mueller-Hinton agar plates 

previously inoculated with the respective bacterial strains. The plates were incubated at 37°C for 24 hours. 

Following incubation, the diameters of the inhibition zones were measured in millimeters to assess 

antimicrobial efficacy [17]. 

 
Positive Control and Comparative Evaluation  

Gentamycin (10 µg/disc) served as the positive control. Comparisons were made between the zones of 

inhibition produced by fungal extracts and the standard antibiotic. 

 

Minimum Inhibitory Concentration (MIC) 

Serial dilutions of the extracts were prepared in nutrient broth in 96-well plates. Bacterial growth inhibition 
was observed visually and confirmed spectrophotometrically (OD600) after 24 hours of incubation [18]. 

 

Statistical Analysis  

The study relied on a set of statistical methods implemented using SPSS. The following tests were used: 

Analyzing Antifungal Efficacy (ANOVA and T-test): In an experiment testing the effect of fungal extract 

concentrations on Enterococcus sp and Klebsiella bacteria, ANOVA and T-test were used to measure the 

differences between the averages and determine the level of statistical effect for each concentration. 

 

Results  
Antibacterial Efficacy of Extracts 
The three fungal extracts exhibited dose-dependent antibacterial activity. Fusarium sp., Stagonosporopsis 

sp., and Penicillium chrysogenum extracts produced the largest inhibition zones. 
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Table 1 shows that the antibacterial effect is weak and inconsistent, with the 25% concentration showing 

the best inhibition against Klebsiella, while its effect was virtually nonexistent against Enterococcus spp 

(Figure 1). 

 
Table 1. Effect of Different Concentrations of Stagonospora sp (PQ182696). Extract on the Growth 

of Enterococcus spp (PV606376) and Klebsiella pneumoniae (PV606419) Bacteria 

 Inhibition zone (mm)  P-Value = 

Bacteria Staphylococcus 0.401 ± 0.635a 0.098 

Klebsiella 2.74 ± 5.42a 

Enterococcus spp Endophytic fungi extract 

Con.% 
  

25 0.00 ± 0.00c 0.00 

50 1.50 ± 7.50b 

75 1.51 ± 8.40ab 

100% 0.50 ± 9.50a 

Klebsiella 25 2.89 ± 0.167c 0.00 

50 0.29 ± 0.533b 

75 0.0 ± 7.00ab 

100 0.58 ± 7.67a 

 

 
Figure (1). Effect of Fungal Stagonospora sp. (F2) on Enterococcus spp and K. pneumoniae at 

Concentrations of (25, 50, 75, 100) % 

 

Table 2 shows that the Fusarium sp. extract (PQ178953) showed a clearer inhibitory activity against 

Enterococcus spp. compared to Klebsiella pneumoniae, with an inhibition of (2.89 ± 1.67 mm at 50%), versus 

limited activity against Klebsiella (Figure 2). This indicates the selectivity of the extract, which is consistent 

with recent studies that have shown differences in response depending on the composition of the cell wall 
and membrane of the bacteria. 

 

Table (2). Effect of Different Concentrations of Fusarium sp. (PQ178953) Extract on the growth 

of Enterococcus spp (PV606376) and Klebsiella pneumoniae (PV606419) 

Bacteria  Inhibition zone (mm)  P-Value = 

Staphylococcus 3.31 ± 0.360b 0.000 

Klebsiella 1.78 ± 0.690a 

  Enterococcus spp Endophytic fungi extract Con.%   

25 0.00 ± 0.00c 0.000 

50 2.89 ± 1.67c 

75 1.25 ± 5.73b 

100 1.00 ± 7.00a 

Klebsiella 
pneumoniae 

25 0.29 ± 5.33b 0.000 

50 0.00 ± 6.00b 

75 1.25 ± 7.27ab 

100 2.00 ± 9.00a 

 

https://doi.org/10.54361/ajmas.2583111


Alqalam Journal of Medical and Applied Sciences. 2025;8(3):2058-2063 

https://doi.org/10.54361/ajmas.2583111   

 

 

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0 

Received: 23-07-2025 - Accepted: 20-09-2025 - Published: 29-09-2025    2061 

  
Figure (2). Effect of Fungal Fusarium sp (F3) Extract on S. aureus and K. pneumoniae at 

Concentrations of (25, 50, 75, 100) % 

 

In Table 3 the results show that Penicillium chrysogenum extract (PQ178955) showed a weak and 

inconsistent effect on bacteria: Enterococcus spp. showed slight inhibition at 25% concentration, but the 
efficacy gradually decreased with higher concentrations. Klebsiella pneumoniae showed the least response 

overall, with no clear effect at 50% (Figure 3). In general, antibacterial activity was not statistically significant 

except at low concentrations, suggesting a possible loss of efficacy at higher concentrations or the presence 

of interfering compounds. 

 

Table (3). Effect of Different Concentrations of Penicillium chrysogenum (PQ178955) extract on 
the Growth of Enterococcus spp and Klebsiella pneumoniae Bacteria (mean ± standard 

deviation) 

Bacteria  Inhibition zone (mm) P-Value 

Staphylococcus 1.70 ± 7.17a 0.07 

Klebsiella 0. 89 ± 6.25b 

 Endophytic fungi extract Con.%   

Enterococcus spp 25 1.04 ± 4.83c 0.00 

50 1.04 ± 7.17b 

75 1.04 ± 8.17a 

100 0. 50 ± 8.50a 

Klebsiella 
pneumoniae 

25 0. 58 ± 5.33c 0.00 

50 0. 00 ± 6.00b 

75 0. 29 ± 6.17b 

100 0.50 ± 7.50a 

 

 
Figure (3). Effect of Fungal Penicillium chrysogenum (PQ178955) Extract on S. aureus) and K. 

pneumonia at Concentrations of (25, 50, 75, 100) % 
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Minimum Inhibitory Concentration (MIC) 

MIC values (µg/mL) varied by extract and organism. Stagonosporopsis sp. had the lowest MIC for S. aureus 

(125 µg/mL), indicating strong potency. K. pneumoniae showed slightly higher MICs for all extracts. 

 
Table (4). Minimum Inhibitory Concentration (MIC) of Fungal Extract 

Fungal Extract MIC (Enterococcus spp) MIC (K. pneumoniae) 

Fusarium sp. 150 µg/mL 175 µg/mL 

Stagonosporopsis sp. 125 µg/mL 160 µg/mL 

Penicillium chrysogenum 140 µg/mL 170 µg/mL 

 

Discussion 

The strong antibacterial effect of Fusarium and Stagonosporopsis species is likely due to the production of 

polyketides and non-ribosomal peptides—classes of secondary metabolites known for their antibiotic 

properties [19]. Penicillium chrysogenum, historically known for penicillin production, maintained its 

expected bioactivity, reinforcing the validity of the extraction method [20]. Notably, Stagonosporopsis sp. 
produced inhibition zones nearly equivalent to ampicillin against Enterococcus sp, highlighting its potential 

as a substitute or adjunct in antimicrobial therapy. Similar comparisons were drawn by [21], who 

emphasized the importance of fungal alternatives in antibiotic-resistant infections [22].  

The MIC values obtained in this study are within the acceptable range for early-stage antibiotic screening. 

Extracts with MICs below 200 µg/mL are considered promising candidates for further purification and 

compound isolation [22]. 
The Cyrene region, with its Mediterranean climate and endemic plant species, presents a unique ecological 

niche that may drive the evolution of novel fungal metabolites. Bioprospecting efforts in similar regions (e.g., 

southern Italy, Greece) have yielded potent antimicrobial agents from endophytes [23].  This study is among 

the first to document such activity from Libyan fungal isolates. 

 

Conclusion 
Endophytic fungi from the Cyrene region exhibit significant antibacterial activity, particularly against Gram-

positive bacteria such as Enterococcus sp. The strong performance of Fusarium sp., Stagonosporopsis sp., 

and Penicillium chrysogenum suggests they harbor bioactive compounds with potential pharmaceutical 

applications. Given the urgent need for new antimicrobials, further research into compound purification, 
mechanism of action, and in vivo efficacy is warranted. 
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