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Abstract 
The Laplace transform is a powerful mathematical tool for converting partial differential equations 
into simpler algebraic equations. This transformation method is widely used in engineering, 
physics, and applied mathematics to solve problems involving time-dependent processes. Laplace 
transforms are a popular tool for solving initial-value problems. In most undergraduate courses, 
the use of tables, special theorems, partial fractions, and convolution is the method taught for 

finding the inverse. In most problems involving partial differential equations. Consider a function 

￼f(t) ￼such that f(t)= 0 for t< 0. Then the Laplace integral is defined as  ℒ[𝑓(𝑡)] =  F(s) ￼=

∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡 
∞

0
. The place transform is the most commonly employed analytic technique after 

separation of variables. One of the key elements of this method involves finding the Laplace 
transform of u(x,t) and its partial derivatives, where u(x,t) denotes the solution to the partial 

differential equations.the Laform of u(x,t) ￼is d by the integral   U(x,s) = ∫ 𝑢(𝑥, 𝑡)𝑒−𝑠𝑡𝑑𝑡 
∞

0
.ℒ[𝑓(𝑡)] =  

F(s) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡 
∞

0
. Clarify that Laplace transforms may be used to solve linear partial 

differential equations. And the solution of linear partial differential equations by Laplace 

transforms is the most commonly employed analytic technique after separation of 

variables. One of the key elements of this method involves finding the Laplace transform 

of u(x,t) and its partial derivatives, where u(x,t) denotes the solution to the partial 

differential equations.the Laplace transform of u(x,t) is defined by the integral   U(x,s) =

∫ 𝑢(𝑥, 𝑡)𝑒−𝑠𝑡𝑑𝑡 
∞

0
. 
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Introduction  
This paper aims to clarify the theoretical foundations of the Laplace transform, discuss its key properties, 
and demonstrate its application in solving linear differential equations. Many physical processes in nature 

evolve within domains that may be considered infinite or semi-infinite in extent [1-5]. Consequently, the 

Laplace transform has proven to be a powerful analytical tool for addressing linear partial differential 

equations commonly encountered in engineering and the sciences [6-12]. The objective of this study is to 

illustrate the practical utility of Laplace transforms by establishing a unified conceptual starting point. To 

achieve this, the paper provides a structured review of Laplace transforms, ordinary differential equations, 
and relevant aspects of complex variable theory. 

 

Preliminaries  
Here, I recall the definitions of the Laplace transform and using the Laplace transform to solve partial 
differential equations. 

 

Definition 1 

Consider a function f(t) such that f(t) = 0 for t < 0. Then the Laplace integral  

                                            ℒ[𝑓(𝑡)] =  F(s) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡 
∞

0
 

defines the Laplace transform of f(t), which I write ℒ[𝑓(𝑡)] or F(s). The Laplace transform of f(t) exists, for 

sufficiently large s, provided f(t) satisfies the following conditions: 

f(t) = 0 for t < 0, 
f(t) is continuous or piecewise continuous in every interval,  

𝑡𝑛|𝑓(𝑡)| < ∞  𝑎𝑠 t → 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛, 𝑤ℎ𝑒𝑟𝑒 n < 1, 
𝑒−𝑠0𝑡|𝑓(𝑡)| < ∞  𝑎𝑠 t → ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑠0. 𝑇ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  𝑠0 is called the abscissa of convergence. 
Example 1 

Let us find the Laplace transform for the Heavisine step function: 

H(t-a)= {
1,       t > a,
0,       t < a.

 

The Heavisine step function is essentially a bookkeeping device that gives us the ability to"switch on" and 

"switch off" a given function. For example, if we want a function f(t) to become nonzero at time t, we 

represent this process by the product f(t) H(t-a). 
From the definition of the Laplace transform, 
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ℒ[𝐻(𝑡 − 𝑎)] = ∫ 𝑒−𝑠𝑡𝑑𝑡 =
∞

𝑎

𝑒−𝑎𝑠

𝑠
,     s> 0 

 

Example 2 

The Dirac delta function or impulse function, often defined for computational purposes by  

𝛿(𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝛿𝑛(𝑡) = 𝑙𝑖𝑚
𝑛→∞

{
𝑛 2⁄ ,       |𝑡| <  

1

2 
 ,

0,        |𝑡|  >  
1

2 
  .

 

Plays an especially important role in transform methods because its Laplace transform is  

ℒ[𝛿(𝑡 − 𝑎)] = ∫  𝛿(𝑡 − 𝑎) 𝑒−𝑠𝑡𝑑𝑡 =
∞

0
𝑙𝑖𝑚
𝑛→∞

𝑛

2
∫   𝑒−𝑠𝑡𝑑𝑡

𝑎+1 𝑛⁄

𝑎−1 𝑛⁄
 

 

Table 1: Some General Properties of Laplace Transforms with a > 𝟎 

 

No. 

 

Property 

 

Function, f(t) 

 

Laplace Transform, F(s) 

1 
 

Linearity 
 

𝑐1𝑓(𝑡) + 𝑐2𝑔(𝑡) 
 

𝑐1𝐹(𝑠) + 𝑐2𝐺(𝑠) 

2 
 

Scaling 

 

𝑓(𝑡/𝑎) 𝑎⁄  

 

𝐹(𝑎𝑠) 

3 
 

Multiplication by 𝑒𝑏𝑡 

 

𝑒𝑏𝑡𝑓(𝑡) 
 

𝐹(𝑠 − 𝑏) 

4 
 

Translation 

 

𝑓(𝑡 − 𝑎) 𝐻(𝑡 − 𝑎) 

 

𝑒−𝑎𝑠𝐹(𝑠) 

5 
 

Differentiation 

 

𝑓(𝑛)(𝑡) 
 

𝑠(𝑛)𝐹(𝑠) − 𝑠(𝑛−1)𝑓(0) − 𝑓(𝑛−1)(0) 

6 
 

Integration 
∫  𝑓(𝜏) 𝑑𝜏

𝑡

0

 
 

𝐹(𝑠)/s 

7 
 

Convolution 
∫  𝑓(𝑡

𝑡

0

− 𝜏)𝑔(𝜏) 𝑑𝜏 

 
𝐹(𝑠) 𝐺(𝑠) 

 

Definition 2 

Consider now the transform of the function ￼￼￼  𝑒−𝑎𝑡𝑓(𝑡)whera is any real number￼, definition   

where a is any real number, then the definition    

ℒ[𝑒−𝑎𝑡𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑒−𝑎𝑡𝑓(𝑡)𝑑𝑡
∞

0
 ……………………(1.1) 

Or                                                              = ∫  𝑒−(𝑠+𝑎)𝑡𝑓(𝑡) 𝑑𝑡 
∞

0
……………(1.2) 

                                                        ℒ[𝑒−𝑎𝑡𝑓(𝑡)] = 𝐹(𝑠 + 𝑎)   ………………(1.3)           

Such that the function is known as the first shifting theorem and states that if 𝐹(𝑠) is the transform of 𝑓(𝑡) 
and a is a constant, then 𝐹(𝑠 + 𝑎) is the transform of  𝑒−𝑎𝑡𝑓(𝑡).   
 

Example 3 

Let us find the Laplace transform of 𝑓(𝑡)  = 𝑒−𝑎𝑡𝑠𝑖𝑛(𝑏𝑡)  .Because the Laplace transform of ￼ is 

b/(s𝑠𝑖𝑛(𝑏𝑡)+b²),b/(s²+b²), 

ℒ[𝑒−𝑎𝑡𝑠𝑖𝑛(𝑏𝑡)] =
𝑏

(𝑠+𝑎)²+𝑏²
 ……………………(1.4) 

where I have simply replaced s by s+a in the transform for 𝑠𝑖𝑛(𝑏𝑡). 
 

Example 4 

Let us find inverse of the Laplace transform  

     𝐹(𝑠) =
𝑠+2

𝑠²+6𝑠+1
 ……………………(1.5) 

Rearranging terms,  

 

                                  𝐹(𝑠) =
𝑠+2

𝑠2+6𝑠+1
=

𝑠+2

(𝑠+3)2−8
……………………(1.6) 

 

=
𝑠 + 3

(𝑠 + 3)² − 8
−

1

2√2

2√2

(𝑠 + 3)² − 8
… … … … … … … … (𝟏. 𝟕) 

Immediately, from the first shifting theorem, 

𝑓(𝑡) =𝑒−3𝑡𝑐𝑜𝑠ℎ(2√2𝑡) −
 𝑒−3𝑡

2√2
𝑠𝑖𝑛ℎ(2√2𝑡) … … … … … … … … (𝟏. 𝟖) 
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Definition 3 

Consider the Laplace transform of f(𝑡 − 𝑏)  𝐻(𝑡 − 𝑏),  then the definition of the second shifting theorem: if 

𝐹(𝑠) is the transform of ￼ then 𝐹(𝑠)￼ is is the transform of 𝑓(𝑡), then  𝑒−𝑏𝑠𝐹(𝑠) is the  

transform of f(𝑡 − 𝑏)  𝐻(𝑡 − 𝑏),  where b is any real number and positive as   

ℒ[𝑓(𝑡 − 𝑏)𝐻(𝑡 − 𝑏)] =  ∫   𝑓(𝑡 − 𝑏)  𝐻(𝑡 − 𝑏)𝑒−𝑠𝑡𝑑𝑡

∞

0

= ∫   𝑓(𝑡 − 𝑏) 𝑒−𝑠𝑡𝑑𝑡

∞

𝑏

 

  

= ∫   𝑒−𝑏𝑠 𝑒−𝑠𝑥  𝑓(𝑥)𝑑𝑥 … … … … … … … … (𝟏. 𝟗)

∞

0

 

 

Or             

                             ℒ[𝑓(𝑡 − 𝑏)𝐻(𝑡 − 𝑏)]   =    𝑒−𝑏𝑠 𝐹(𝑠) … … … … … … … … (𝟏. 𝟏𝟎)   
 

Linear ordinary differential equations                       

Most analytic techniques for solving a partial differential equation involve reducing it to an ordinary 

differential equation or a set of ordinary differential equations that is hopefully easier to solve than the 

original partial differential equation. 
From the vast number of possible ordinary differential equations, I focus on second-order equations. All of 

the following techniques extend to higher-order equations. 

Consider the ordinary differential equation       

            

                          𝑎
𝑑²𝑦

𝑑𝑥²
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑓(𝑥). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.1) 

Where a, b, and c are real. For the moment, let us take 𝑓(𝑥)  = 0 

Assuming a solution of the form 𝑦(𝑥) = 𝐴𝑒𝑚𝑥  and substituting into the Equation (2.1) 
 

 

                                           𝑎𝑚² + 𝑏𝑚 + 𝑐 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.2) 
 

This purely algebraic equation is the characteristic or auxiliary equation. Because equation (2) is quartic, 

there are either two real roots, or else a repeated real root, or else conjugate complex roots.  

At this point, let us consider each case separately and state the solution. Any undergraduate book on 
ordinary differential equations will provide the details for obtaining these general solutions. 

Case  :  Two distinct real roots   𝑚1 and 𝑚2, 
                                                       𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥. . . . . . . . . . . . . . . . . . . . . . . . . . . (2.3) 

Case ￼ :  A repeated real root  𝑚1,𝚰𝚰 :  A repeated real root  𝑚1, 

 

                                                       𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚1𝑥. . . . . . . . . . . . . . . . . . . . . . . . . . (2.4) 
Case  :  Conjugate complex roots  𝑚1 =  𝑝 + 𝑞𝑖  and  𝑚2 =  𝑝 − 𝑞𝑖 ,  
 

                              𝑦(𝑥) = 𝑐1𝑒𝑝𝑥𝑐𝑜𝑠(𝑞𝑥) + 𝑐2𝑒𝑝𝑥𝑠𝑖𝑛(𝑞𝑥) . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5) 
 

Example 5 

One of the most encountered differential equations is  

 

                                       
𝑑²𝑦

𝑑𝑥²
 −  𝑚²𝑦 = 0     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.6) 

Where m is real and positive. Because there are two distinct roots, 𝑚1,2 = ±𝑚 the general solution is  

             𝑦(𝑥) = 𝐴𝑒𝑚𝑥+ 𝐵𝑒−𝑚𝑥 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.7) 
Although this solution is perfectly correct, it is most useful in a semi-infinite domain. For finite domains, 

such as 0 <  x  < L.  A little algebra shows that equation (7) also equals  

                     𝑦(𝑥) = 𝐶 𝑐𝑜𝑠ℎ(𝑚𝑥)  + 𝐷 𝑠𝑖𝑛ℎ(𝑚𝑥)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.8) 
Where 

                                 𝑐𝑜𝑠ℎ(𝑚𝑥)  =
1

2
 (  𝑒𝑚𝑥 +  𝑒−𝑚𝑥 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.9) 

and 

                                 𝑠𝑖𝑛ℎ(𝑚𝑥)  =
1

2
 (  𝑒𝑚𝑥 −  𝑒−𝑚𝑥 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10) 

The advantage of using equation (8) follows from the fact sinh(0)=0 and cosh(0)=1 

 

Example 6 
Let us find the solution to the equation  
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𝑑²𝑦

𝑑𝑥²
+ 2

𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑐𝑜𝑠2(𝑥). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11) 

 
Our guess for a particular solution is then  

 

    𝑦𝑝(𝑥)  =  𝐴 + 𝐵𝑐𝑜𝑠(2𝑥) + 𝐶𝑠𝑖𝑛(2𝑥) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.12) 

Because 𝑐𝑜𝑠2(𝑥) = [1 + 𝑐𝑜𝑠(2𝑥)] 2⁄  substituting equation (12) into equation (11) and equating coefficients for 

the constant, cosine, and sine terms, I find that A= 
1

2
, B=- 

3

50
 , C= 

2

25
 . 

The remaining task is to compute the arbitrary constants in the homogeneous solution. In this paper, I 

always have conditions at both ends of a given domain, even if one of these points is at infinity. 

Now I illustrate the products used in solving these boundary-value problems.  

 

Example 7 

Solve the boundary-value problem 

      
𝑑²𝑦

𝑑𝑥²
− 𝑠𝑦 = −

1

𝑠
   ,             𝑦(0) = 𝑦(1) = 0     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.13) 

Where s > 0. The general solution to equation (13) is  

                    y(x)=A sinh(x√𝑠 )+ B cosh(x √𝑠 )+
1

𝑠²
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.14) 

I have chosen to use hyperbolic functions because the domain lies between  

x=0 and x=1. Now, 

                  y (0) = B+ 
1

𝑠²
 =0       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.15) 

and  

                           y (1) =A sinh (√𝑠 )+ B cosh( √𝑠 )+ 
1

𝑠2 = 0     … … … … … . . . . . . . (2.16) 

Solving for A and B,  

        

                       A = 
𝑐𝑜𝑠ℎ( √𝑠)−1

𝑠²𝑠𝑖𝑛ℎ (√𝑠 )
              and               B= −

1

𝑠²
         . . . . . . . . . . . . . . . . . . . . . . . (2.17) 

 

Therefore,  

                          y(x) = 
1−𝑐𝑜𝑠ℎ(𝑥 √𝑠)

𝑠²
  +  

𝑐𝑜𝑠ℎ( √𝑠)−1

𝑠²𝑠𝑖𝑛ℎ (√𝑠 )
 sinh(x√𝑠 ) . . . . . . . . . . . . . . . . . . . . . (2.18) 

 
Problem 

Solve the boundary-value problem 

    

      
𝑑2𝑦

𝑑𝑥2 − (𝑎2 + 𝑠)𝑦 = 0, 𝑦(−1) =
1

𝑠
, 𝑦(1) = 0 

   
Where a and s are really positive. 
 

Complex variables 
Complex variables provide analytic tools for the evaluation of integrals with an ease that rarely occurs with 

real functions. The power of integration on the complex plane has its roots in the basic three C's: the 
Cauchy-Riemann equations, the Cauchy-Goursat theorem, and Cauchy's residue theorem. The Cauchy-

Riemann equations have their origin in the definition of the derivative in the complex plane. Just as I have 

the concept of the function in real variables, where for a given value of, I can compute a corresponding 

value of 𝑦 = 𝑓(𝑥). 
I can define a complex function 𝑤 = 𝑓(𝑧) where for a given value of   

z = 𝑥 +iy (i =√−1) I may compute 𝑤 = 𝑓(𝑧)  = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). 
For 𝑓′(𝑧)  to exist in some region, 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) 𝑚𝑢𝑠𝑡 satisfy the Cauchy-Riemann equations: 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
    𝑎𝑛𝑑     

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

     𝜕𝑥      
. . . . . . . . . . . . . . . . . . . . . (3.1) 

 

If 𝑢𝑥, 𝑢𝑦 , 𝑣𝑥  and 𝑣𝑦 are continuous in some region surrounding a point 𝑧0 and satisfy the equation (3.1) 

there, then 𝑓(𝑧) is analytic there. If a function is analytic everywhere in the complex plane, then it is an 

entire function. 
Alternatively, if the function is analytic everywhere except at some isolated singularities, then it is 

meromorphic. Note that 𝑓(𝑧) must satisfy the Cauchy-Riemann equations in a region and not just at a 

point. For example, 𝑓(𝑧) = |𝑧|  satisfies the Cauchy-Riemann equations at z=0 and nowhere else. 

Consequently, this function is not analytic anywhere on the complex plane. 
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Integration on the complex plane is more involved than in real, single variables because   𝑑𝑧 =   𝑑𝑥 + 𝑖 𝑑𝑦.  

We must specify a path or contour as we integrate from one point to another. To see why, I introduce the 

following results: 

 

Cauchy-Goursat theorem 1 

If 𝑓(𝑧) is an analytic function at each point within and on a closed contour 𝐶, then is an analytic function at 

each point within and on a closed contour 𝐶, then  

 ∮ 𝑓(𝑧)𝑑𝑧 = 0.
𝐶

 

This theorem leads immediately to 

 

The principle of deformation of contours 

The value of a line integral of an analytic function around any simple closed contour remains unchanged if 

I deform the contour in such a manner that I do not pass over a point where f(z) is not analytic. 
Consequently, I can evaluate difficult integrals by deforming the contour so that the actual evaluation is 

along a simpler contour or the computations are made easier, as seen (3.1). 
Most integrations on the complex plane, however, are with meromorphic functions. The Next theorem 
involves these functions; it is  

 

Cauchy's residue theorem 2 

If f(z) is analytic inside a closed contour C (taken in the positive sense) except at points 𝑧1, 𝑧2, . . .,  𝑧𝑛 where 
f(z) has singularities, then   

 

∮ 𝑓(𝑧)𝑑𝑧 =
𝐶

2𝜋𝑖 ∑ Res [ 𝑓(𝑧);  𝑧𝑗  ]

𝑛

𝑗=1

. . . . . . . . . . . . . . . . . . . . . . . (3.2) 

 

where Res [ f(z); 𝑧𝑗 ]  denotes the residue of f(z) for the singularity located at 𝑧𝑗 . 

 
The question now turns to what a residue is and how I compute it. The answer involves the nature of the 

singularity and an extension of the Taylor expansion, called a Laurent expansion. 

𝑓(𝑧) = ∑ 𝑎𝑛(z − 𝑧𝑗)𝑛 + ∑ 𝑎−𝑛(z − 𝑧𝑗)−𝑛

∞

𝑛=1

∞

𝑛=0

. . . . . . . . . . . . . . . . . . . . . (3.3) 

For 0 <  z − 𝑧𝑗 < 𝑎 < . The first summation is merely the familiar Taylor expansion; the second summation 

involves a negative power of z − 𝑧𝑗   and gives the behaviour at the singularity. The residue equals the 

coefficient 𝑎−1.  and gives the behavior at the singularity. The residue equals the coefficient 𝑎−1. 
Turning to the nature of the singularity, there are three type:  

Essential Singularity: Consider the function 𝑓(𝑧) = 𝑐𝑜𝑠( 1/𝑧 ). Using the expansion for cosine,  

𝑐𝑜𝑠 (
1

𝑧
) = 1 −

1

2! 𝑧²
+

1

4! 𝑧4
 −

1

6! 𝑧6
+. . . . . . . . . . . . . . . . . . . . . . . . (3.4) 

For 0 <  |𝑧| < ∞. Note that this series never truncates in the inverse powers of z. Essential singularities 

have Laurent expansions that have an infinite number of inverse powers of for z −
𝑧𝑗 . 𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑓𝑜𝑟 this essential singularity at z=0 is zero. 

 

Removable Singularity: Consider the function 𝑓(𝑧) = 𝑠𝑖𝑛( 1/𝑧 ). This function appears, at first blush, 
to have a Singularity at z=0. Upon applying the expansion for sine,  

  

(
𝑠𝑖𝑛 (𝑧)

𝑧
) = 1 −

𝑧²

3!
+

𝑧4

5!
−

𝑧6

7!
+

𝑧8

9!
 − . . . . . . . . . . . . . . . . . . . . . . . . (3.5) 

For all z, I have no singularity at all. This is an example of a removable singularity; its residue is zero. 

Pole of order n: Consider the function 

 f (𝒵)=
1

(𝑍−1)3(𝑍+1)
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.6) 

This function has two singularities: one at z =1 and the other at z =− 1. 

I shall only consider the case z =1.  After a little algebra, 

 f (𝒵)=
1

(𝑍−1)3

1

 2+(𝑍−1)
    . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7) 

 f (𝒵)=
1

2

1

(𝑍−1)3

1

 1+(𝑍−1)/2
 . . . . . . . . . . . . . . . . . . . . . . . . . (3.8) 

                 f (𝒵)=
1

2

1

(𝑍−1)3 [1 −
(𝑍−1)

2 
+

(𝑍−1)²

 4
−

(𝑍−1)³

 8
+. . . ]  . . . . . . . . . . . . . . . . (3.9) 

                 f (𝒵)=
1

2

1

(𝑍−1)3 −
1

4(𝑍−1)² 
+

1

 8(𝑍−1)
−

1

 16
+  . . . . . . . . . . . . . . . . . . . . . . . . (3.10) 
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For 0 <  |𝑧 − 1| < 2. Because the largest inverse (negative) power is three, the singularity at z =1 is called a 

third-order pole; the value of the residue 

e is 1/8. Generally, I refer to a first-order pole as a simple pole. The construction of a Laurent expansion is 

not the method of choice in computing a residue. (For an essential singularity, it is the only method; 

however, essential singularities are very rare in applications.) 

The common method for a pole of order n is 

              𝑅𝑒𝑠 [ 𝑓(𝑧);  𝑧𝑗  ] =
1

(𝑛−1)!
𝑙𝑖𝑚
𝑧→𝑧𝑗

𝑑𝑛−1

𝑑𝑧𝑛−1 [(𝑧 − 𝑧𝑗)𝑛𝑓(𝑧)] . . . . . . . . . . . . . . . . . . . (3.11) 

For a simple pole equation (3.11) simplifies to 

                                    𝑅𝑒𝑠 [ 𝑓(𝑧);  𝑧𝑗  ] = 𝑙𝑖𝑚
𝑧→𝑧𝑗

[(𝑧 − 𝑧𝑗) 𝑓(𝑧)] . . . . . . . . . . . . . . . . . . . (3.12) 

Quite often, 𝑓(𝑧) = 𝑝(𝑧)/𝑞(𝑧). from l'Hospital's rule, it follows that 

                            𝑅𝑒𝑠 [ 𝑓(𝑧);  𝑧𝑗  ] =  
𝑝(𝑧𝑗)

𝑞(𝑧𝑗)
 . . . . . . . . . . . . . . . . . . . . . . . . . (3.13) 

Laplace's And Poisson's Equations 

Using Laplace transforms to solve Laplace's or Poisson's equations would appear to be a strange choice 

since there are no initial. However, for half and quarter plane problems, one (or both) of the independent 

variables can act as the variable. The tricky part is satisfying the boundary conditions. The following 

example shows how this is done. 
  

Example 8 

Let us solve Poisson's equation:  

 

                            
𝜕²𝑢

𝜕𝑥²
+

𝜕²𝑣

𝜕𝑦²
= 𝑥𝑒−𝑥,    0 < 𝑥 < ∞,  0 < 𝑦 < 𝑎 . . . . . . . . . . . . . . . . . . (4.1) 

Subject to the boundary conditions 

                    𝑢(0, 𝑦) = 0,           lim
𝑥→∞

 |𝑢(𝑥, 𝑦) | < ∞, 0 < 𝑦 < 𝑎  . . . . . . . . . . . . . . . . . . (4.2) 

And 
                                  𝑢(𝑥, 0) = 0,   𝑢𝑥(𝑥, 𝑎) = 0     0 < 𝑥 < ∞   . . . . . . . . . . . . . . . . . . . . (4.3) 
This problem gives the electrostatic potential within a semi-infinite slab of thickness a with a charge 

density  𝑥𝑒−𝑥. 
Because the domain is semi-infinite the 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, I introduce the Laplace transform  

                                                      U(s,y) = ∫ 𝑢(𝑥, 𝑦)𝑒−𝑠𝑥𝑑𝑥       
∞

0
. . . . . . . . . . . . . . . . . . . . (4.4) 

Thus, taking the Laplace transform of the equation (4.1), I have  

 𝑑²𝑈(𝑠, 𝑦)

𝑑𝑦²
+ 𝑠²𝑈(𝑠, 𝑦) − 𝑠𝑢(0, 𝑦) − 𝑢𝑥(0, 𝑦) =

1

(𝑠 + 1)²
 . . . . . . . . . . . . . . . . . . . . (4.5) 

Although  𝑢(0, 𝑦) = 0, 𝑢𝑥(0, 𝑦) is unknown and I denote its value by f(y), therefore the equation (4.5) 
becomes  

 𝑑²𝑈(𝑠, 𝑦)

𝑑𝑦²
+ 𝑠²𝑈(𝑠, 𝑦) = 𝑓(𝑦) +

1

(𝑠 + 1)²
  ,      0 < 𝑦 < 𝑎  . . . . . . . . . . . . . . . . . . (4.6) 

With 𝑈(𝑠, 0) = 𝑈′(𝑠, 𝑎) = 0. 
To solve the equation, (4.6), I first assume that I can rewrite f(y) as the Fourier series  

I now understand why I rewrote the right side of the equation(4.6) as a Fourier series; the solution U(s,y) 
automatically satisfies the boundary condition  

U(s,0) = U'(s,a) = 0. 

 

Example 9 

Let us solve a similar problem to the previous one, but in cylindrical coordinates. Here,  

            
1

𝑟
 

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +  

𝜕2𝑢

𝜕𝑧2  =  
2

𝑏
n(z) 𝛿 (r – b) 0 ≤ 𝑟 < 𝑎 ,    0 < 𝑧 < ∞   . . . . (4.7)   

  

Subject to the boundary conditions  

                               𝑢(𝑟, 0) = 0   , lim
𝑧→∞

|𝑢(𝑟, 𝑧)| < ∞,         0 ≤ 𝑟 < 𝑎   . . . . . . . . . . . . . (4.8) 

 

and  

                                                𝑢(𝑎, 𝑧) = 0,       0 < 𝑧 < ∞ ,          . . . . . . . . . . . . . . . . . . . . (4.9) 
 

Where 0 < 𝑏 < 𝑎  .This problem gives the electrostatic potential within a semi-infinite cylinder of radius a 

that is grounded and has the charge density of n(z) within an infinitesimally thin shell located at r = b. 

Because the domain is semi-infinite in the z direction, I introduce the Laplace transform 

 

                                  U(r,s) = ∫ 𝑢(𝑟, 𝑧)𝑒−𝑠𝑧𝑑𝑧         
∞

0
. . . . . . . . . . . . . . . . . . . . . . (4.10) 

Thus, taking the Laplace transform of the equation (4.7), I have  
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1

𝑟

𝑑

𝑑𝑟
[𝑟

 𝑑𝑈(𝑟,𝑠)

𝑑𝑟
] + 𝑠²𝑈(𝑟, 𝑠) − 𝑠𝑢(𝑟, 0) − 𝑢𝑧(𝑟, 0) =

2

𝑏
𝑁(𝑠) 𝛿 (𝑟 –  𝑏) . . . . . . . (4.11) 

 

Although  𝑢(𝑟, 0) = 0, 𝑢𝑧(𝑟, 0) is unknown and I denote its value by f(r); therefore, the equation (4.11) 
becomes  

 

          
1

𝑟

𝑑

𝑑𝑟
[𝑟

 𝑑𝑈(𝑟, 𝑠)

𝑑𝑟
] + 𝑠²𝑈(𝑟, 𝑠) = 𝑓(𝑟)  +  

2

𝑏
𝑁(𝑠) 𝛿 (𝑟 –  𝑏)   . . . . . . . . . . (4.12) 

With lim
𝑟→0

|𝑢(𝑟, 𝑠)| < ∞,      𝑎𝑛𝑑 𝑈(𝑎, 𝑠) = 0. 

 

Conclusion 
The Laplace transform is an efficient and elegant method for solving certain classes of partial differential 

equations, and is a robust technique for solving linear partial differential equations with well-defined 

initial and boundary conditions. Its ability to transform time derivatives into algebraic terms makes it a 

valuable tool for engineers and scientists dealing with heat conduction, wave propagation, and diffusion 

problems. By converting time derivatives into algebraic terms, it simplifies the solution process and offers 
clear analytical pathways. Its use remains widespread in engineering and applied mathematics, 

particularly for time-dependent problems.  
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